
ADD: Application and Data-Driven Controller Design

Yikai Lin∗†
University of Michigan

Yuru Shao†
University of Michigan

Xiao Zhu†
University of Michigan

Junpeng Guo
University of Michigan

Kira Barton
University of Michigan

Z. Morley Mao
University of Michigan

ABSTRACT
Existing SDN controllers commonly adopt an event-driven
model thatminimizes southbound communication and control-
plane overhead. This model satisfies most existing SDN ap-
plications’ goals to maximize data plane performance while
still being able to programmatically control with a decent
level of visibility. However, as network composition becomes
more heterogeneous with NFV and IoT, such model can be
insufficient for future applications that rely more on data
analysis and intelligent decision making.
In this paper, we present our findings in a case study on

smart manufacturing systems, which have highly heteroge-
neous device compositions, and applications that are much
less “throughput” hungry or “latency” sensitive than net-
work applications but require a lot more data for (real-time)
decision making. We share the insights we gain that help
us design a new Application and Data-Driven (ADD) model
for SDN controllers. We build a proof-of-concept ADD con-
troller based on this model and develop two applications to
showcase its new capabilities. Evaluation results show that
ADD delivers satisfying scalability and performance. More
importantly, applications enabled by ADD gainmore insights
of the data plane and can make better decisions faster.

CCS CONCEPTS
• Networks → Network architectures; Programmable
networks; Programming interfaces;

∗The contact author: yklin@umich.edu
†These authors contributed equally to this paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSR ’19, April 3–4, 2019, San Jose, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6710-3/19/04. . . $15.00
https://doi.org/10.1145/3314148.3314351

KEYWORDS
SDN, data-driven, data analysis, network programming, ap-
plication, interface, northbound, southbound

ACM Reference Format:
Yikai Lin, Yuru Shao, Xiao Zhu, Junpeng Guo, Kira Barton, and Z.
Morley Mao. 2019. ADD: Application and Data-Driven Controller
Design. In Symposium on SDN Research (SOSR ’19), April 3–4, 2019,
San Jose, CA, USA. ACM, New York, NY, USA, 7 pages. https://doi.
org/10.1145/3314148.3314351

1 INTRODUCTION
The rise of SDN not only marks the transition of a fully-
distributed network architecture to a hybrid one with logi-
cally centralized control, it also puts a strong emphasis on the
roles applications can play in network management and even
design. One of the many outstanding features offered by SDN
is a global view of the network, which empowers applica-
tions with greater freedom and visibility to programmatically
manage the network. To some extent, the more information
the controller is able to provide to applications, the more
capable applications are in gaining insights of the underlying
data plane and making (globally) optimal decisions.

Existing SDN controllers aremostly event-driven. In
existing SDN controller implementations [1, 6, 9], applica-
tions mostly rely on network events such as link down, link
congested, new host up and no matching rules found for packet
to trigger reactive procedures like rerouting.

Systematic support for data access is limited. Vari-
ous existing southbound protocols [5, 11, 21, 27] do allow
SDN applications to proactively pull data and states such
as port/link stats, packet headers, and even full packets from
data plane components to gain more insights. However, lack
of systematic support for such operations means application
development is tightly coupled with specific southbound
protocols. Moreover, each application acting independently
leads to redundant data retrieval across different applications
due to lack of request consolidation, and duplicate data copy
residing in each application.

Future SDN applications will be more data-driven.
As network composition continues to diversify in terms of

84

https://doi.org/10.1145/3314148.3314351
https://doi.org/10.1145/3314148.3314351
https://doi.org/10.1145/3314148.3314351

SOSR ’19, April 3–4, 2019, San Jose, CA, USA Yikai Lin et al.

Table 1: Comparisons between SDN and Smart Manufacturing Systems
Legacy SDN Smart Manufacturing Systems Future Data-Driven SDN

Data/Production Plane
Composition Programmable Switches Conveyor belts, Robots,

CNCs, Motors, Printers, etc.
Programmable Switches,
Physical and Virtualized Network Functions

Applications/Tasks

1. Routing
2. Firewall
3. Traffic Engineering
4. Network diagnostics etc.

1. Routing
2. Predictive Maintenance Control
3. Scheduling
4. Anomaly Detection etc.

1. All legacy SDN apps but more complex
2. Device-specific service customization
(Phones, Vehicles, wearables, sensors, etc.)
3. Emerging apps like VR, AR, etc.
4. Real-time network telemetry

Data/States Mostly discrete, real-time Both continuous and discrete, real-time and historical

network function types (NFV) and end-host types (IoT, au-
tonomous vehicles, VR/AR devices, etc.), the need for net-
work service (i.e., features offered by SDN applications) cus-
tomization and flexibility will increase dramatically, so does
the volume and diversity of data produced on the data plane.
Different end-hosts might have drastically different require-
ments for network services in terms of QoS guarantees, poli-
cies, and even intensive data analysis. To satisfy these re-
quirements, SDN applications cannot simply rely on existing
network events and data digests that are usually device-
agnostic and contain scarce information. Instead, they must
have direct, flexible and efficient data access, as should also
be provided by the controller.

Unfortunately, as we discussed earlier, existing SDN con-
troller implementations commonly adopt an event-driven
model that lack general support for applications to read data
freely and efficiently. Therefore, in this paper, we present
ADD, a new application and data-driven SDN controller de-
sign that aims to improve data access flexibility and efficiency
for SDN applications. Several design choices are made in
ADD to satisfy and resolve the aforementioned requirements
and limitations: (1) Applications subscribe to data in addition
to events; (2) Data subscriptions are consolidated to elim-
inate redundancies; (3) Southbound interface uses generic
key-value based schema; (4) Northbound interface is divided
into high-level intent-based APIs and low-level APIs.

ADD’s design complements instead of contradicts existing
event-driven designs. Although we focus on the data-driven
aspect in this paper, we believe both event-driven and data-
driven models are needed for different applications.

We make the following contributions in this paper:

• We identify the gaps between existing SDN controller
design and the requirements of data-driven applica-
tions. We carry out a case study on smart manufactur-
ing systems and applications to understand the impli-
cations of data-driven applications.

• We propose an Application and Data-Driven (ADD)
controller design that provides general, flexible and
efficient data access for applications, and generic inter-
faces for controller and applications to process data.

• We prototype ADD and present preliminary evalua-
tion results that show the scalability, performance and
usefulness of the new design. We develop two appli-
cations using the new model to gain more insights of
the data plane and outperform existing solutions.

2 CASE STUDY
In order to gain a better understanding of data-driven applica-
tions, especially the volume and characteristics of data they
deal with, and their requirements for the controller, we carry
out a case study on smart manufacturing systems [20] and
applications with an actual smart manufacturing testbed (Fig-
ure 2). Smart manufacturing systems are data-driven and
heterogeneous in nature, which share many commonalities
with a data-driven SDN. Table 1 shows the comparisons be-
tween both types of systems on their data/production plane
composition, applications that they run, and the character-
istics of data they produce and consume.

Networking v.s. Manufacturing. Despite being rather
different domains, networking and manufacturing share
quite some similarities. For instance, consider Routing in
networking where a network path is selected to forward
data packets: the manufacturing equivalence would be to
select a physical path to transport materials or parts. Both ap-
plications need visibility of data/production plane’s topology
and diverse properties such as device capabilities, bandwidth,
and queue length. As shown in Table 1, legacy SDN has a rel-
atively homogeneous data plane with mostly programmable
switches, while manufacturing production plane and future
SDN data plane are much more heterogeneous. On a man-
ufacturing production plane, each machine could process
parts with different structures and generate a huge amount
of data due to continuous physical properties like voltage,
current, etc.. Manufacturing applications utilize these data
to make real-time decisions, monitor machine status, and
predict failures. Similarly, P4 [11] allows packet formats to
be customized and different VNFs generate a wide spectrum
of different data and states. Historical data also plays a signif-
icant role in manufacturing applications. If SDN applications
can make use of all these data across different sources, they

85

ADD: Application and Data-Driven Controller Design SOSR ’19, April 3–4, 2019, San Jose, CA, USA

Application

Plane

ADD Controller

Data Storage

Manufacturing

Production Plane

Northbound Interface

Southbound Interface

App Manager

Anomaly
Detection

Routing …

1

3

4

5

6

Data ServiceQuery Compiler

2

SDN

Data Plane

Figure 1: Data flow of the ADD controller design

can have a much better visibility of the network and deliver
features that were not possible before.

Insights. Through this case study we intend to explore
the data-driven aspect of future SDN. These comparisons
give us a fresh perspective of how SDN composition might
look like in near future and how data could become a dom-
inant factor in future application development. We envision
future SDN to benefit even more from such a data-driven
controller design because of the diversifying end host types
(phones, vehicles, sensors, wearables, etc.) in addition to the
already heterogeneous network functions.

3 ADD CONTROLLER DESIGN
Figure 1 shows our proposed ADD controller design. In brief,
ADD decouples applications from data retrieval and storage
and provides general data access support with its internal
pipeline and generic interfaces (described below). As a result,
application developers can solely focus on “what data to
request” and “what to do with it”.

3.1 Key Controller Modules
The controller has four main modules that provide applica-
tions with efficient data access capabilities. As shown in Fig-
ure 1, (1) Apps register themselves to the App Manager with
their interests (i.e. the data they want); (2) Query Compiler
traverses all the interests, converts them into corresponding
data fields, and consolidates all fields as a minimal set of
queries and (3) passes them to the Data Service; (4) Data
Service continuously queries data (a subset as defined by
the interests) via the southbound interface and caches them
in the Data Storage; (5) Applications fetch data from the
Data Storage which contains both raw data (as explicitly re-
quested by the applications) and network states (e.g., global
view). Both historical data and real-time data are stored in
the Data Storage. Data storage supports both data-driven

and event-driven models: applications can directly read data
from it, or listen to changes of network states.

Applications’ fetching data is asynchronous to controller
modules’ operations. This publish-subscribe-like messaging
mechanism enables on-demand data extraction. Specifically,
at the time data is produced or consumed, the producer and
the consumer does not need to communicate with each other.

3.2 Southbound Interface
The southbound interface has to satisfy requirements of
high scalability and low latency. As the number of appli-
cations grows, and with the increasing data volume they
read from the production plane, the workload of the south-
bound interface rises significantly. Moreover, as discussed
in §2, both manufacturing production plane and future SDN
data plane will be heterogeneous. A generic abstraction is
desired in order for the controller modules and applications
to evolve/function independently from different devices.
To support abstractions and to cope with the potentially

large data volume and the demands for structured, contex-
tualized data from upper layers, we propose a customizable
information model to describe the production/data plane.
Specifically, data items (essentially key-value pairs) are grouped
into objects which reflect device properties and functionali-
ties. Each object can have multiple instances. For example, a
CNC spindle has four axes, therefore the Axis object have
four instances Axis_X, Axis_Y, Axis_Z, and Axis_S. The
Axis object consists of spindle axis properties, such as speed,
acceleration, and voltage. If certain data items in an in-
stance are not of interest to any running applications, the
southbound never queries them for better efficiency.

3.3 Northbound Interface
ADD provides flexible and efficient RESTful APIs for appli-
cations to communicate with the controller. As mentioned
in §1, future applications will require frequent, sizable data
exchanges with the controller, and these applications will
need much more computing resources to perform data ana-
lytics and machine learning algorithms [16] which can easily
overwhelm the controller. It is also challenging to manage
application life-cycles, security and privacy [10] when they
are co-located with the controller. Therefore, we envision
applications to be moving out of the controller and be re-
motely communicating with it. The trend of geo-distributed
computing [17, 26] and the aforementioned concerns make
us believe that a bandwidth-efficient and low-latency north-
bound interface is desired. Existing RESTful northbound
APIs [1, 6, 9] in SDN controllers have two major limitations:
(1) Data is organized in a coarse-grained manner thus client
could get more than they want while bandwidth is wasted;

86

SOSR ’19, April 3–4, 2019, San Jose, CA, USA Yikai Lin et al.

Robot2
CNC4 CNC3

Stopper3

Quality Check1 Stopper1

Stopper2

Conveyor

GantryInput/Output

Stopper4

Quality Check2

Robot1
CNC2 CNC1

Figure 2: Physical layout of the testbed

(2) Client may have to submit multiple requests that cor-
respond to different URLs to get all its desired data, which
causes significant delay (although HTTP pipe-lining can help
mitigate this problem, it can cause other problems such as
Head-Of-Line blocking [23]).
ADD maintains a hierarchical data structure that houses

fine-grained data fields and allows declarative query [19],
in order to address the aforementioned issues. This data
structure defines the capabilities (e.g., available data items)
of the northbound interface. Both the server-side (controller-
side) northbound service and the client-side (application-
side) northbound libraries have visibility of this definition.
The client makes a single query to get all its desired data
by strictly following the definition, e.g., specifying a set of
data items associated with a set of data plane components.
Data service in the controller refers to it to execute queries
from clients and only returns the exact data that clients need,
nothing more, nothing less.
To offer great usability, we design two types of APIs, i.e.,

intent-level APIs and task-level APIs. Hierarchical north-
bound design [18] has been proposed to provide better ap-
plication programming experience in event-driven SDN. We
believe it is also helpful in our data-driven approach. Task-
level APIs perform specific tasks such as querying a given
set of data items, computing reconfigurations, etc..

4 PROTOTYPE AND EVALUATIONS
To understand how ADD performs in practice, we build a
prototype ADD controller (as described in §4.1) using open-
source software. We also develop two applications (§4.3):
anomaly detection and routing, which exist in both manu-
facturing and networking domains. In this section, we first
introduce our prototype ADD controller and discuss some of
the implementation choices, then present both quantitative
and qualitative evaluation results. Specifically, we evaluate
the ADD design in terms of scalability, usability and perfor-
mance. We carry out most of our experiments on an actual
manufacturing testbed in proximity with our controller. As
shown in Figure 2, the testbed consists of 4 Computer Nu-
meric Control milling machines (CNCs), 2 Robots, 2 quality
check modules and a conveyor loop. As parts travel on the
conveyor, they might encounter machines with different

functions. For example, when a stopper pauses a part, a ro-
bot can pick it up and places it on either one of the two
CNCs depending on the part model. We can clearly see the
analogies between this testbed and an SDN data plane.

4.1 Prototype
Controller. Existing SDN controllers such as Floodlight [1]
adopt a publish/subscribe model for applications to choose
which events to listen to. ADD adopts a similar mechanism
but with one major modification: instead of the controller
dispatching data to applications, applications proactively
pull data from the data storage, with the exception of events
(as detailed below). Because of the heterogeneity of devices
and the unstructured nature of their data, we implement the
data storage with MongoDB [4]. The data storage stores not
only the data read from southbound but also the global view,
which reflects the dynamics of the physical layout of produc-
tion plane. The global view provides the connectivity of man-
ufacturing units to applications like routing which require
machine capabilities and the available paths between them.
The initial layout of the production plane is constructed from
a pre-defined configuration that describes the interactions
and paths between units. This global view updates automati-
cally based on the streaming data obtained from southbound.
Instead of waiting for applications to pull the data storage
and potentially discover this event, the controller notifies
interested applications. This shows how event-driven model
and data-driven model can work together to better serve
application needs.

Southbound. OPC [7] is the most widely deployed stan-
dard for data access in industrial automation. In OPC, all the
data items are provided as tags. Hardware vendors define de-
fault tags that their devices produce. Meanwhile, operators
can define specific input and output bits, internal tempo-
rary variables as tags. Instead of reading from or writing to
I/O bits, machine controllers are able to use tag names in
their code to easily read and write data. Our southbound
interface implementation leverages OPC to get specific data
tags from individual machines. Additionally, we define the
information model using Protocol Buffers [8]. The benefits
of the information model are twofold. First, it assembles
scattered tags into meaningful data structures to describe
machine status. Second, it provides an abstraction so that the
controller can be completely agnostic to production plane
details, which means the production plane (or data plane)
can be swapped without changing the fundamental design
of the controller. Both real-time data and historical data of
the production plane are provided, and the controller can
be deployed anywhere and retrieve data through remote
procedure calls (RPCs) based on gRPC.

87

ADD: Application and Data-Driven Controller Design SOSR ’19, April 3–4, 2019, San Jose, CA, USA

Table 2: Intent-level and task-level northbound API examples
API Arguments Description
findRoute() device_id, part_id Find an alternative route for a set of parts.
getTopology() status_type Return a graph representation of the topology with associated device status.
isConnected() initial_id, candidate_id Check whether the initial device and candidate device is connected.
hasCapability() device_id, part_id Check whether a specific machine is capable of processing a set of parts.
isReady() device_id, part_id Check whether a device is running the program that aims to process a part.
detectAnomaly() anomaly_type Detect anomalies within a specific type.
getDevice() device_id Get the statistics of a set of specific machines.
isFailed() device_id Check whether a specific machine is failed.

Northbound. We build our northbound interfaces on top
of GraphQL [2] which provides a type system that is an
ideal vantage point for us to define hierarchical data map-
pings. The GraphQL server directly interacts with Mon-
goDB in the controller, while the GraphQL client resides
in the app-side northbound libraries. We implement six task-
level APIs and two intent-level APIs as shown in Table 2.
findRoute() is an intent-level API that consists of four
task-level APIs, which are getTopology(), isConnected(),
hasCapability(), and isReady(). The other intent-level
API, detectAnomaly(), is composed of two task-level APIs
getDevice() and isFailed().

4.2 Microbenchmarks
Southbound Performance.We read different numbers of
data items from the production plane in order to measure
southbound latency. Figure 3 shows the average reading time
from 1 item to 200 items in 50 measurements. Overall, the la-
tency is proportional to the number of data items being read,
but there are some spikes of the average read latency.We find
that those spikes come from outliers caused by unusually
long OPC reading. Although there is no similar southbound
implementation for comparison, the average latency of read-
ing 200 tags is no worse than an industrial data collection
tool named Rockwell Cloud Agent Elastic.

0 50 100 150 200

Number of items

0

50

100

150

200

250

A
v
e

ra
g

e
 r

e
a

d
in

g
 t

im
e

 (
m

s
)

Figure 3: Southbound average reading time

Controller Scalability. Because of SDN controllers’ cen-
tralized design, scalability is one of the most important crite-
ria when evaluating their feasibility. For ADD’s data-driven
design, scalability is especially critical. For example, the over-
head of controller writing data in the data storage should be

contained despite large number of applications and interests.
In order to evaluate this, we measure the time between a
CNC going down on the production plane and the global
view being updated in the data storage when varying the
number of interests. If this time interval doesn’t go up with
the number of interests, it means (1) ADD’s data storage has a
stable overhead; (2) even with a large number of applications
and interests, global view is updated fairly quickly.

The CNC we experiment with has a total of 800 tags, and
we vary the number of tags queried by the controller from
15 to 800. The average time intervals measured are 9, 203ms,
9, 276ms, 11, 278ms respectively for 15, 100 and 800 such tags.
This means with more than 50X the workload, the overhead
increases for merely 22%. Note that since applications may
query overlapping data items, ADD’s data consolidation fea-
ture helps further improve the scalability. Besides, here we
only use a single controller instancewith a single southbound
channel. In the future we plan to experiment with a larger
scale of applications and data plane components, and better
understand ADD’s scalability by distributing the controller
instances and parallelizing the streaming channels.

Northbound API Usability. To evaluate the ease of use
of our northbound API, we develop two first-of-its-kind cy-
ber manufacturing applications: anomaly detection app and
routing app. The total LoC of the anomaly detection app
and routing app is 78 and 210, respectively. More detailed
evaluation of the application will be introduced in §4.3.

Northbound Performance. To evaluate bandwidth effi-
ciency and latency performance of our northbound interface,
we run a benchmark app on a laptop that is one hop (WiFi
link) away from the controller. Our app monitors the TX
bytes and the current bitrate of the first port of two switches.
We compare with RESTful APIs in Ryu [9] which provides
two related RESTful APIs for querying these two statis-
tics. They are (1) GET:/stats/port/<dpid>[/<port>] and
(2) GET:/stats/portdesc/<dpid>/[<port>]. For compar-
ison, we implement both of them in our controller. We as-
sume the controller already has the data stored in its database
and study the performance of the northbound interface it-
self. We measure the amount of data exchanged and the

88

SOSR ’19, April 3–4, 2019, San Jose, CA, USA Yikai Lin et al.

response latency for getting a pair of bitrate and TX bytes
values. ADD’s northbound interface consumes 255 bytes of
data over the network while Ryu consumes 1,516 bytes. This
disparity is attributed to the fact that ADD gets the exact
data the app wants while Ryu delivers all the related data and
lets the app do the data retrieval. The latency is 9.1ms and
43.4ms for ADD and Ryu, respectively. The improvement
is brought by using just one query to fetch all the desired
data, unlike Ryu where multiple requests have to be made
to separately fetch data from different URLs.

4.3 System-level Test with Applications
We develop two example applications (co-located with the
controller) to test if ADD can (1) provide data access with low
latency and (2) offer great programmability to applications
so that they can benefit from the extra data access.
Anomaly detection. To showcase the capabilities of ADD
and the low latency of the southbound and the northbound
interfaces, we develop an anomaly detection application that
looks into network traffic and machine status simultaneously
to detect anomalies and diagnose provenance. We are able
to detect anomalies earlier than tools that rely purely on ma-
chine status. We compare our anomaly detection application
with the Rockwell FactoryTalk program. While the testbed
is running, we inject anomalies into CNC3 and measure the
the detection delays of our application and FactoryTalk [3].
Our anomaly detection application reports an anomaly after
12.6 seconds, while FactoryTalk detects that more than 35
seconds later. The root cause is that the underlying OPC
has a caching mechanism, but we are able to tell anomalies
sooner with data collected from network communications.
Once an anomaly is detected, we let the anomaly detection
application notify the routing application for computing a
new route and deploying the reconfigurations.
Routing. The routing app awaits routing requests coming
from the controller or other apps such as anomaly detection
and machine maintenance. When the routing app receives
notifications of a failure and that a part needs to be rerouted,
it analyzes the topology and capabilities of each machine
to make the rerouting decision. Our key metric is the appli-
cation response time – the time between the reception of
notification and when the rerouting decision is made. We
repeat the experiment for 10 times and show the average val-
ues. It takes 10.9ms to query machine and topology data from
the controller, 2.9ms to analyze the available machines, 1.7ms
to check the capable machines, and 1.4ms to find the ready
machines. The total application response time is 16.9ms.
Interactions between the two applications. With both
apps installed, the administrator can leverage them to quickly
detect failure and make rerouting decisions. In our evalu-
ation, the routing app registers to listen for notifications

from the anomaly detection app described above. Summing
the response time of the two apps results in a 13s latency.
Compared to traditional manufacturing system that usually
takes hours, ADD significantly reduces the time it takes to
(1) detect an anomaly and (2) deploy a new configuration.

5 RELATEDWORK
Legacy SDNControllers. Existing SDN controllers [1, 6, 9]
have a common event-driven model without general data
access support (usually offered by southbound protocols
like OpenFlow or NetFlow). ADD provides systematic data
access support for SDN applications and adopts a data-driven
model that decouples applications from data retrieval and
storage. ADD complements rather than contradicts existing
controller designs in that one could still use protocols like
OpenFlow or P4 for reconfigurations of certain devices.
Data-driven Approaches. The integration of big data or
data analysis with SDN is becoming an interesting topic for
both areas. Some architectures are proposed [12, 13, 15, 22]
to facilitate data analysis in SDN. These controller designs
either focus on data analysis on the application side without
providing systematic support for efficient data query and
storage, or do not address the limitations of existing propri-
etary southbound interfaces that support limited data access.
Other works like Marple [25] and Sonata [14] improve the
flexibility and scalability of network monitoring/telemetry
by leveraging state-of-the-art programmable switches. ADD
is a generic controller design that interfaces with different
kinds of applications and data plane devices.
Hierarchical Controller Design. Previous works such as
SoftMoW [24] propose hierarchical structure to improve
SDN controller scalability. Such effort is orthogonal to our
work and could potentially be utilized to further improve
our controller design (e.g. improving southbound scalability
by having multiple children controller instances).

6 CONCLUSION AND FUTUREWORK
In this paper, we propose an Application and Data-Driven
controller design, or ADD, that aims to provide better data
access capabilities for future SDN applications. ADD adopts
a data-driven model that decouples applications from data
retrieval and storage, and allows applications to gain more
insights of underlying devices. We prototype ADD and eval-
uate it with two example applications that show the scala-
bility and usability of ADD. Moreover, applications enabled
by ADD can outperform existing solutions by utilizing the
enriched insights. Although ADD’s design is generic and the
results in this paper are mostly not specific to manufactur-
ing, we would like to expand our case studies in networking
domain and experiment with more networking applications
(e.g., traffic engineering) and components (e.g., P4 switches).

89

ADD: Application and Data-Driven Controller Design SOSR ’19, April 3–4, 2019, San Jose, CA, USA

ACKNOWLEDGEMENTS
This work was supported by NSF under award CNS-1544678.
We would like to thank our shepherd, Anduo Wang, and the
anonymous reviewers for their valuable feedback.

REFERENCES
[1] 2018. Floodlight SDN Framework. http://www.projectfloodlight.org/

floodlight/.
[2] 2018. GraphQL. https://graphql.org/.
[3] 2018. Manufacturing Software Solutions, Rockwell FactoryTalk.

https://www.rockwellautomation.com/rockwellsoftware/products/
overview.page.

[4] 2018. MongoDB. https://www.mongodb.com/.
[5] 2018. NetFlow. https://www.solarwinds.com/what-is-netflow.
[6] 2018. ONOS SDN Framework. https://onosproject.org/.
[7] 2018. OPC Foundation. https://opcfoundation.org/.
[8] 2018. Protocol Buffers. https://developers.google.com/

protocol-buffers/.
[9] 2018. Ryu SDN Framework. https://osrg.github.io/ryu/.
[10] Yousra Alkabani and Farinaz Koushanfar. 2007. Active Hardware

Metering for Intellectual Property Protection and Security.. In USENIX
security symposium. 291–306.

[11] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, et al. 2014. P4: Programming protocol-independent packet
processors. ACM SIGCOMM Computer Communication Review 44, 3
(2014), 87–95.

[12] Alexander Clemm, Mouli Chandramouli, Nitish Gupta, Robert Lerche,
Ashwin Pankaj, Manjunath Patil, Ganesan Rajam, V Anbalagan, Joe
Zhang, and Yifan Zhang. 2015. DNA: An SDN framework for Dis-
tributed Network Analytics (Demo Paper). In Integrated Network Man-
agement (IM), 2015 IFIP/IEEE International Symposium on. IEEE, 1143–
1144.

[13] Laizhong Cui, F Richard Yu, and Qiao Yan. 2016. When big data meets
software-defined networking: SDN for big data and big data for SDN.
IEEE network 30, 1 (2016), 58–65.

[14] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer
Rexford, and Walter Willinger. 2018. Sonata: Query-driven streaming
network telemetry. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication. ACM, 357–371.

[15] Haojun Huang, Hao Yin, Geyong Min, Hongbo Jiang, Junbao Zhang,
and YuleiWu. 2017. Data-driven information plane in software-defined
networking. IEEE Communications Magazine 55, 6 (2017), 218–224.

[16] Chien-Chun Hung, Ganesh Ananthanarayanan, Peter Bodik, Leana
Golubchik, Minlan Yu, Paramvir Bahl, and Matthai Philipose. 2018.

VideoEdge: Processing Camera Streams using Hierarchical Clusters.
In Proceedings of the Third ACM/IEEE Symposium on Edge Computing.
IEEE, 115–131.

[17] Chien-ChunHung, Ganesh Ananthanarayanan, Leana Golubchik, Min-
lan Yu, and Mingyang Zhang. 2018. Wide-area analytics with multiple
resources. In Proceedings of the Thirteenth EuroSys Conference. ACM,
12.

[18] Yikai Lin, Ulaş C Kozat, John Kaippallimalil, Mehrdad Moradi, An-
thony CK Soong, and Z Morley Mao. 2018. Pausing and resuming
network flows using programmable buffers. In Proceedings of the Sym-
posium on SDN Research. ACM, 7.

[19] Boon Thau Loo, Joseph M Hellerstein, Ion Stoica, and Raghu Ramakr-
ishnan. 2005. Declarative routing: extensible routing with declarative
queries. In ACM SIGCOMM Computer Communication Review, Vol. 35.
ACM, 289–300.

[20] Felipe Lopez, Yuru Shao, ZMorleyMao, JamesMoyne, Kira Barton, and
Dawn Tilbury. 2018. A software-defined framework for the integrated
management of smart manufacturing systems. Manufacturing Letters
15 (2018), 18–21.

[21] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
2008. OpenFlow: enabling innovation in campus networks. ACM
SIGCOMM Computer Communication Review 38, 2 (2008), 69–74.

[22] Albert Mestres, Alberto Rodriguez-Natal, Josep Carner, Pere Barlet-
Ros, Eduard Alarcón, Marc Solé, Victor Muntés-Mulero, David Meyer,
Sharon Barkai, Mike J Hibbett, et al. 2017. Knowledge-defined network-
ing. ACM SIGCOMM Computer Communication Review 47, 3 (2017),
2–10.

[23] Xianghang Mi, Feng Qian, and Xiaofeng Wang. 2016. Smig: Stream
migration extension for http/2. In Proceedings of the 12th International
on Conference on emerging Networking EXperiments and Technologies.
ACM, 121–128.

[24] Mehrdad Moradi, Wenfei Wu, Li Erran Li, and Zhuoqing Morley Mao.
2014. SoftMoW: Recursive and reconfigurable cellular WAN architec-
ture. In Proceedings of the 10th ACM International on Conference on
emerging Networking Experiments and Technologies. ACM, 377–390.

[25] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh
Goyal, Venkat Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar,
and Changhoon Kim. 2017. Language-directed hardware design for
network performance monitoring. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication. ACM, 85–98.

[26] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula,
Aditya Akella, Paramvir Bahl, and Ion Stoica. 2015. Low latency
geo-distributed data analytics. In ACM SIGCOMM Computer Commu-
nication Review, Vol. 45. ACM, 421–434.

[27] Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software Defined Traffic
Measurement with OpenSketch.. In NSDI, Vol. 13. 29–42.

90

http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/
https://graphql.org/
 https://www.rockwellautomation.com/rockwellsoftware/products/overview.page
 https://www.rockwellautomation.com/rockwellsoftware/products/overview.page
https://www.mongodb.com/
https://www.solarwinds.com/what-is-netflow
https://onosproject.org/
https://opcfoundation.org/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://osrg.github.io/ryu/

	Abstract
	1 Introduction
	2 Case Study
	3 ADD Controller Design
	3.1 Key Controller Modules
	3.2 Southbound Interface
	3.3 Northbound Interface

	4 Prototype and Evaluations
	4.1 Prototype
	4.2 Microbenchmarks
	4.3 System-level Test with Applications

	5 Related Work
	6 Conclusion and Future Work
	References

