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Abstract
Video Conferencing Applications (VCAs) are indispensable for real-
time communication in remote work and education by enabling
simultaneous transmission of audio, video, and screen-sharing con-
tent. Despite their ubiquity, research on how these platforms allo-
cate network bandwidth, especially under constrained conditions,
and how these resource allocation strategies affect the users’ Qual-
ity of Experience (QoE) is lacking. This paper addresses this gap
by analyzing bandwidth allocation strategies in Zoom, Webex, and
Google Meet, with a focus on QoE implications. To assess QoE, we
propose a general QoE prediction model based on data collected
from a study involving 800 participants. This study is a pioneering
effort in evaluating multimedia transmissions across diverse sce-
narios and network conditions, advancing beyond prior research
focused on single media types. The results demonstrate the model’s
effectiveness and generality in predicting QoE across various VCA
scenarios.

CCS Concepts
• Networks → Network measurement; • Information systems →
Multimedia streaming; •Computingmethodologies→Model
development and analysis.
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1 Introduction
To enhance telepresence, VCAs have gradually integrated various
media sources, including audio, video from camera streams, screen
from screen-sharing streams, chat, and other advanced function-
alities. This integration of multimedia transmission facilitates a
highly customizable communication experience, enabling users to
dynamically select and modify media inputs to suit their specific
virtual meeting requirements. In real-world video conferencing,
multiple media sources are often used simultaneously. For instance,
teachers in online classes may use audio, video, and screen-sharing
to provide a comprehensive learning experience.

Some prior studies analyzed the performance of popular VCAs [5,
16, 24, 29] and revealed their designs, including QoE metrics, net-
work utilization, congestion control, etc. Others introduced innova-
tive frameworks [4, 32] or systems [6] to enhance QoE. However,
these studies mainly focused on individual media sources. A sig-
nificant research gap remains in exploring bandwidth allocation
across different media sources within VCAs, which is essential for
optimizing performance and user satisfaction in video conferencing.

Under bandwidth constraints, video conferencing quality could
degrade without careful resource allocation. The overall QoE de-
pends on the combined performance of all concurrent multime-
dia sources. In scenarios with restricted bandwidth, how to allo-
cate bandwidth—whether prioritized for one media source, divided
equally among all media sources, or distributed unevenly—becomes
critical in determining QoE. For example, in an online class with lim-
ited bandwidth, allocating all bandwidth to support screen-sharing
clarity while ignoring audio transmission may make it difficult
for students to follow the screen-sharing contents without clear
audio, resulting in a reduced QoE. Instead, if each media source
receives a proportionate share of the bandwidth to function at an
acceptable level of quality, the overall QoE could be considerably
enhanced. Therefore, investigating bandwidth allocation strategies
that balance different media sources within network constraints is
vital for optimizing the overall QoE.

To address this, we perform in-depth measurement andmodeling
of bandwidth allocation for three media sources: audio, video (cam-
era streams), and screen (screen-sharing streams). Our study begins
by examining the bandwidth allocation strategies of three major
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commercial VCAs: Zoom, Webex, and Google Meet. Specifically,
we focus on Zoom to examine its bitrate adaptation for each media
source individually. Following this preliminary analysis, we conduct
a broad user study to (1) explore the impact of different bandwidth
allocation strategies on the QoE for real users and (2) develop a
QoE prediction model general to various VCAs and scenarios. To
the best of our knowledge, this model is the first to incorporate mul-
tiple media sources and serves as a benchmark to evaluate whether
VCAs achieve optimal QoE in multimedia transmissions.

Navigating our research, we encounter several vital issues. First,
acquiring QoE metrics like data rate, resolution, and latency from
closed-source commercial VCAs is difficult. Second, to effectively
gain real users’ preferences from a user study, we need to design
media source combinations that reflect a variety of network con-
ditions. It is challenging to select a representative subset of these
combinations for our user study while ensuring that we do not
sacrifice the thoroughness and scope of our research. Third, build-
ing a general and robust QoE prediction model that applies to all
scenarios and VCAs is essential.
Measurement of VCAs. To extract QoE metrics, we devise a mea-
surement methodology to collect data from three VCAs. For large-
scale controlled laboratory experiments, we engineered an automa-
tion tool responsible for client emulation, network control, and data
aggregation at the client end. Among more than 20 hours of video
sessions, we discovered their bandwidth allocation strategies and
identified commonalities. Further, to explore the characteristics of
individual media source transmission, we conduct an extensive case
study on Zoom under restricted network conditions, specifically
focusing on scenarios where bandwidth is limited and packet loss
is high. Our significant findings are presented as follows:

• Under four scenarios with different combinations of media
sources, the three VCAs consistently prioritize bandwidth allocation
in the same order: Audio > Screen > Video.

• Zoom applies distinct bitrate adaptation strategies for video
and screen. Specifically, it supports three-resolution video transmis-
sion and one-resolution screen transmission. However, this fixed
strategy may not continuously satisfy user expectations under dif-
ferent scenarios.
User Study. Our IRB (Institutional Review Board)-approved user
study successfully gathered 45,000 user ratings from 800 partic-
ipants via Amazon Mechanical Turk [21] and covers four com-
mon usage scenarios. We formulate bitrate combination samples
by merging different quality levels of three media sources.

Evaluating the QoE over such a wide range of bitrate combina-
tions is challenging, primarily because comparing every possible
combination with one another in a user study is impractical. To
overcome this, we introduce an “accumulated score” method that
allows us to compare two consecutive combinations as an alterna-
tive to comparing each possible pair. As a result, we can conduct a
user study with only a fraction of the total combinations and still
gain insight into user preferences across all possible pairs.
QoE Modeling. To interpret user ratings and define preference
relationships, we employ the PageRank algorithm [2]. We then rank
the combinations of media source bitrates based on the PageRank
scores. Combinations that receive higher scores are identified as
more preferred by users, establishing a clear preference hierarchy.

Following this, we develop a QoE prediction model that can be
generalized to evaluate QoE across various VCAs and scenarios.
This model is capable of predicting the QoE values for any given
set of input combinations, enabling us to determine if an input
combination achieves optimal QoE. Additionally, it allows us to
rank a set of combinations, pinpointing which one offers the best
QoE. This capability provides significant insights and actionable
recommendations, guiding VCAs to improve user experience by
fine-tuning their services to meet optimal user preferences, partic-
ularly in bandwidth-constrained environments.

Applying this model to evaluate Zoom, Webex, and Google Meet,
we find that their performance is far away from the optimal QoE as
predicted by our model. Among them, Zoom stands out by always
offering a better QoE, showcasing its superior ability to manage
bandwidth and adapt to varying network conditions. Nonetheless,
all platforms have room for improvement to reach the optimal QoE.

The contributions of this paper can be summarized as:
•Key observations and takeaways ofVCAs.Weperformmea-

surements of bandwidth allocation on three VCAs: Zoom, Webex,
and Google Meet, providing valuable insights into their designs.

• QoE Modeling. We introduce a pioneering QoE prediction
model that uniquely incorporates multiple media sources and is
adaptable to various scenarios across different VCAs.

• Measurement Tool and Crowd-sourcing. We design an
automated tool to programmatically control all experimental pro-
cesses and conduct a large-scale user study to gather feedback from
800 participants.

This research does not raise any ethical issues.

2 Related Work
Measurement of Video Conferencing. Different Video Confer-
encing Applications (VCAs) use the same communication protocols
but differ in their choice of codecs and traffic control strategies.
This results in varied performance, even under identical network
conditions. Macmillan et al. [16] measured Zoom, Google Meet, and
Microsoft Teams, revealing distinctions in their recovery methods,
video quality adaptation, and network utilization. Chang et al. [5]
highlighted comparative results of streaming lag, audio/video QoE,
and resource consumption among Zoom, Webex, and Google Meet.
Yang et al. [29] evaluated system architecture, resilience to loss, and
audio/video QoE for Google+, iChat, and Skype. Saini et al. [22]
evaluated the performance of WebRTC-based Video Conferencing,
including processing delay, CPU utilization, latency, jitter, packet
loss, and packet delay.

QoE measurements are paramount when assessing VCAs. In
terms of audio, commonly evaluated metrics include audio qual-
ity [16] and audio latency [29]. Video QoE assessments encompass
aspects like framerate [15, 16], resolution [15], latency [29], and
overall video quality [16]. Beyond these network-level analyses,
researchers also delved deeper, employing transport-layer analysis
to uncover the inner designs, such as congestion control [4, 12, 23],
mechanisms for packet loss recovery [29], measurement-driven
functional model [12], etc.

Some studies explored the security issues of VCAs. [8] conducted
a dynamic security analysis of Zoom, Google Meet, and Microsoft
Teams. [14] investigates three versions (desktop, web, smartphone)
of Webex and identifies several relevant artifacts, including user
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account information, encryption keys, media/text files, meeting
records, etc. [18, 28] scrutinized Zoom’s encryption method, offer-
ing insights and methodologies for decoding UDP and RTP packets.
QoE Modeling. [1] developed a predictive model of QoE for inter-
net video. [7] conducted a small-scale user study to develop a QoE
model for evaluating real-time video systems. [19] developed a QoE
model to map network QoS metrics to video streaming QoE. [30]
conducted a user study to model the QoE of 360-degree volumetric
video streaming. However, these existing studies only focus on
video sources without considering audio and screen-sharing media
sources or their combined QoE.

3 Measurement of VCAs
In this section, we conduct a thorough analysis of three VCAs:
Zoom, Webex, and Google Meet. Our focus centers on exploring
their bandwidth allocation strategies for different media sources,
including video, audio, and screen.

3.1 Measurement Methodology

Media Input UI Control

Virtual 
Video 
Device

Virtual 
Audio 
Device

Keyboard 
Shortcuts

Server

Traffic control

Traffic 
Data

Screen
Recording

Log File

Figure 1: Testbed for measuring commercial VCAs.

An Automation Tool. To effectively control VCAs and simulate
human activities programmatically, we develop a command-line
automation tool, enabling efficient client emulation, network con-
trol, and data collection. It facilitates a streamlined process for
conducting our experiments, as depicted in Figure 1.

• Client Emulation. To facilitate the automated sending and re-
ceiving of media sources, this tool incorporates snd-aloop modules
and aplay [9] for audio input playback, along with v4l2loopback [10]
modules paired with FFmpeg [26] for video input playback. We
also utilize xdotool [25] to programmatically execute keyboard
and mouse commands for various VCA operations, such as start-
ing/ending screen, enabling/disabling audio/video, switching view
layout, and opening/closing full-screen mode.

• Network Control. For managing network conditions on the
client side, we use Linux TC [3], allowing us to configure uplink
and downlink bandwidth and adjust latency precisely.

• Data Collection. For our analysis of bandwidth allocation across
three VCAs, we capture network traffic via tcpdump [11] and obtain
QoE metrics of each media source.

To collect QoE metrics for Zoom, we set up video or screen
sharing in full-screenmode, with a statistics panel at the bottom-left
corner displaying real-time resolution and framerate data, as shown
in Figure 1. For the other two VCAs, which provide detailed log

files, we periodically download and extract framerate and resolution
averages. We preprocess input video/screen sources by overlaying
a unique small QR code to each frame as the frame ID. We first
recognize the QR code on each received frame to get the frame ID,
then match frames with the same frame IDs between the sender
and receiver. This process helps calculate the frame quality for
each matched pair and determines the average video quality and
framerate for the entire video conferencing session.

To obtain packet-level information, we decode packets on both
the sender and receiver sides, extracting valuable details from the
UDP/RTP headers. Since Zoom customizes its protocol, we refer to
methods in [17, 18] to bypass the unknown datagrams.
Experimental Setup. Our measurement framework operates on
machines running Ubuntu 22.04.1 LTS with Zoom 5.17.11, Webex
43.2, and Google Meet installed. These machines are connected
to our on-campus wireless network, which guarantees a mini-
mum bandwidth of 90 Mbps for both uploads and downloads. Each
experiment includes 𝑁 (𝑁 ≥ 2) users, where one user (referred
to as “Sender”) is responsible solely for uploading media to the
VCA servers. Our research encompasses three measurements, each
grounded in its unique experimental setup.

• Bandwidth Allocation for Three VCAs: In our study on band-
width allocation across Zoom,Webex, and Google Meet, we identify
four key scenarios reflecting different configurations and user be-
haviors, detailed in Table 1. These scenarios involve various media
sources and window sizes. Our unidirectional experiments focus on
evaluating the data rate of each media source under two conditions:
limited uplink bandwidth at the sender and constrained downlink
bandwidth at the receiver. Bandwidth limits are set at intervals of
0.2, 0.4, 0.6, 0.8, 1.0 Mbps. Each video conferencing session lasts five
minutes, with each experiment conducted three times for reliability.

• Zoom Measurement: To examine the transmission behavior of
each media source under network constraints, our experiments
center on Zoom and involve one-directional tests with 𝑁 = 6 par-
ticipants. It includes one sender with unrestricted bandwidth, while
the five receivers have unique downlink capacities, specifically
Unlimited, 750Kbps, 500Kbps, 250Kbps, and 150 Kbps.
Media Inputs. For our audio input, we use a recording of a lec-
ture where the lecturer engages in continuous speech, ensuring a
consistent audio profile for the duration of our study. In terms of
video and screen inputs, we select a lecture video, which is stan-
dardized to a resolution of 1280×720 and runs at a framerate of 25
FPS. To facilitate precise alignment of transmitted frames with their
received counterparts, we embed a QR code for each frame of the
video content. This methodological detail enhances the reliability
of our frame-by-frame analysis.

Audio Video Screen
Scenario 1

√
(Full-Screen)

Scenario 2
√

(Full-Screen)
Scenario 3

√
(Thumbnail) (Full-Screen)

Scenario 4
√

(Half-Screen) (Half-Screen)
Table 1: Four scenarios with different media source inputs.

3.2 Network Utilization
VCAs employ distinct strategies for managing multimedia transmis-
sion. Before analyzing their performance under restricted network
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Audio (bps) Video (bps) Screen (bps)
send receive send receive send receive

Zoom 100K 100K 1M 0.8M 1M 1M
Webex 95K 95K 700K 700K 1M 1M

Google Meet 70K 70K 1M 1M 800K 800K
Table 2: Data rate of different media sources in three VCAs.

conditions, we first measure their network utilization, focusing on
the basic data rates of audio, video, and screen sharing in video
conferencing. Table 2 displays the average data rates of these media
types without any network constraints. For the three VCAs, the
audio data rate is around 100Kbps, while the video and screen data
rates are around 1Mbps. The sender’s data rate is generally similar
to the receiver’s, except for Zoom’s video transmission, where the
receiver’s data rate is 20% lower than the sender’s. We explore this
discrepancy further in §3.4.2.

3.3 Bandwidth Allocation across Media Sources
In practical video conferencing, using multiple media sources simul-
taneously is common. This section explores how VCA prioritizes
and distributes bandwidth when multiple media sources are in play,
especially under bandwidth-constrained conditions.
3.3.1 Scenario Descriptions.
We present four frequently encountered scenarios with distinct
combinations of media sources, as outlined in Table 1.
• Scenario 1: Only audio and video connections are active, with the
video in full-screen mode. An example of this scenario is an online
interview, where body language and facial expressions are crucial.
• Scenario 2: Only audio and screen connections are active, with
the screen in full-screen mode. This applies to group discussions,
such as academic deliberations, where the focus is on slides or
whiteboard content.
• Scenario 3: Audio, video, and screen connections are active, with
the screen in full-screen mode and video displayed as a thumbnail
in the upper right corner. This scenario commonly occurs in online
conferences where a lecturer presents their work, and attendees
primarily listen.
• Scenario 4: Audio, video, and screen connections are active, with
the video and screen each occupying half of the window. A typical
example is Big Tech companies’ product launch events, where slides
provide detailed information.
3.3.2 Zoom.
In Scenario 1, as bandwidth limits, the video data rate declines while
the audio data rate remains consistent at around 100Kbps, as shown
in Figure 2(a). At extremely low bandwidths (around 200Kbps),
Zoom prioritizes audio, increasing its rate and nearly eliminating
video. Scenario 2, illustrated in Figure 2(b), shows a similar trend
but diverges as audio data rate increases when bandwidth narrows
to 400Kbps, with screen data transmitting at a lower rate than
audio even under severe constraints. Figure 2(c) shows that, in
Scenario 3, tightening bandwidth stabilizes audio and video rates at
approximately 120Kbps and 85Kbps. At 400Kbps, audio increases at
the expense of other sources. At 200Kbps, video becomes negligible,
with audio maintaining a higher rate than the screen. Scenario 4, as
shown in Figure 2(d) shows both video and screen rates dropping
as bandwidth restricts, while audio remains unchanged. At very
low bandwidths, Scenario 4 trends similarly to Scenario 3.

3.3.3 Webex.
Figure 3 illustrates Webex’s bandwidth allocation among three me-
dia sources. The audio data rate remains consistent, while video and
screen-sharing rates decrease as downlink capacity is constrained.
This mirrors Zoom’s pattern, where under significant bandwidth
limitations, the audio data rate surpasses those of screen-sharing
and video, with video rates potentially approaching zero. This be-
havior suggests that Webex employs a similar traffic prioritization
strategy to Zoom, favoring audio over other media types.
3.3.4 Google Meet.
Similar to Zoom and Webex, our analysis reveals that Google Meet
prioritizes audio over video and screen-sharing in its traffic alloca-
tion, as shown in Figure 3. Additionally, in Scenario 4, the video data
rate drops significantly even with moderate bandwidth (0.8Mbps).
This suggests a deliberate strategy by Google Meet to maintain
screen-sharing quality, potentially at the expense of video quality.

Takeaways. Although three VCAs implement distinct bandwidth
allocation strategies, they have the same bandwidth allocation pri-
oritization: audio >screen >video. This fixed traffic prioritization for
audio, video, and screen may degrade the user experience, as it may
not match users’ varying demands for these media sources based on
their different meeting purposes.

3.4 Case Study on Zoom
To understand individual media transmission, we conduct a case
study on Zoom, focusing on examining Zoom’s adaptive bitrate
strategies in bandwidth-constrained networks.

3.4.1 Audio Transmission.
For audio-only conferencing, we observe that a consistent average
bitrate of 100Kbps is maintained. We do not further apply band-
width restrictions on audio transmission because we discover that
a bandwidth lower than 150Kbps jeopardizes the stability of the
meeting connection.

3.4.2 Video Transmission.
In multi-user video conferencing, declining downlink bandwidth at
receivers leads to decreased data rates and varying QoE degradation.
This degradation primarily affects framerate first, then resolution.
Table 3 shows Receiver1, Receiver2, and Receiver3 maintaining
resolution but with decreasing framerates as data rates drop. Fur-
ther decline reduces resolution to 320×180 (180p) in Receiver4 and
256×144 (144p) in Receiver5, with a significant decline of VMAF
and SSIM value, though framerates remain relatively stable.

Sender Receiver1 Receiver2 Receiver3 Receiver4 Receiver5
(Unlimited) (Unlimited) (750Kbps) (500Kbps) (250Kbps) (150Kbps)

Data rate (Kbps) 1158±120 883±130 647±85 453±44 218±35 144±20
Framerate (FPS) 21±3 21±3 13±2 10±2 8±1 7±2
Resolution 360p 360p 360p 360p 180p 144p
SSIM 0.89 0.87 0.84 0.82 0.8
VMAF 91 73 66 41 22

Table 3: QoE metrics of Video with bandwidth limits.
3.4.3 Screen Transmission.
Unlike video, the screen maintains a consistent resolution regard-
less of the downlink bandwidth allocated to each receiver. The
resolution on the receiver side is the same as the sender side. If the
sender’s resolution changes, the receivers adjust accordingly. As
bandwidth declines, the data rate and framerate drop correspond-
ingly, as evidenced in Table 4. Intriguingly, even when the framerate
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Figure 2: Zoom data rates observed at a bandwidth-unlimited Sender and 5 Receivers with limited bandwidths.
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Figure 3:Webex data rates observed at a bandwidth-unlimited Sender and 5 Receivers with limited bandwidths.
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Figure 4:GoogleMeet data rates observed at a bandwidth-unlimited Sender and 5 Receivers with limited bandwidths.

nears zero, the resolution remains unchanged across all receivers.
Compared to Video, Screen-sharing’s SSIM drops less as bandwidth
decreases, indicating the clarity of each frame. This suggests that
degradation in screen quality predominantly impacts the framerate.

Sender Receiver1 Receiver2 Receiver3 Receiver4 Receiver5
(Unlimited) (Unlimited) (750Kbps) (500Kbps) (250Kbps) (150Kbps)

Data rate (Kbps) 1482±230 1439±230 547±150 326±85 168±40 118±20
Framerate (FPS) 10±2 10±2 4±1 2±1 1±1 <1
Resolution 720p 720p 720p 720p 720p 720p
SSIM 0.91 0.89 0.88 0.87 0.85
VMAF 90 86 82 75 64

Table 4: QoE metrics of Screen with bandwidth limits.
Takeaways. The three-resolution video transmission and one-resolution
screen transmission don’t adapt to various factors such as network
conditions (e.g., available bandwidth) and user configurations (e.g.,
window size of the screen-sharing content), incurring network resource
waste and QoE degradation. Thus, Zoom can strategically offload a
part of the transcoding workload to more powerful Zoom servers,
which also reduces uplink bandwidth usage, or find more intelligent
adaptation strategies to balance the trade-off between the additional
transcoding overhead and the quality/latency requirement.

4 User Study
While VCAs have provided insights into their bandwidth alloca-
tion strategies under constrained network conditions, it remains
unclear if these strategies align with user preferences or yield the
optimal user experience. To bridge this gap, we begin with an IRB-
approved user study to collect a dataset of real users’ preferences
on bandwidth allocation for diverse media sources in VCAs under
constrained networks.

4.1 Methodology
Our user study methodology follows the Comparison Category
Rating (CCR) method from ITU-T Rec. P.913 [20]. Instead of con-
ducting an in-person user study, we opt for an online approach
using Qualtrics [27] and Amazon Mechanical Turk (AMT) [21] to
engage a globally diverse pool of participants. The study includes
four scenarios, each with unique audio, video, and screen-sharing
content. For each scenario, we generate video conferencing clips
with different media quality levels, sorted by bitrates. Each clip
lasts for 15 seconds.

Participants watch two side-by-side clips with consecutive bi-
trates. They can manually click the “Play” buttons to view each clip
in full-screen mode and replay themmultiple times before making a
decision. Afterward, they subjectively compare their perceived QoE
using a seven-choice scale ("The first one is {much better, better,
slightly better, similar to, slightly worse, worse, much worse} than
the second one."). For data processing purposes, these qualitative
choices are converted into numerical values, with the scale translat-
ing to numbers from 1 to 7. To prevent audio interference between
two video clips, participants are instructed to manually click the
"play" button to view each clip sequentially.

To ensure rating reliability, we include several “test” comparisons
between the best and worst clips. Data from participants who fail
these “test” comparisons are discarded. Additionally, we track clicks
and the time spent on each comparison, and remove data if the time
is too short or there are fewer than three clicks.

Dataset Overview. To ensure broad applicability, our user study
covers four representative video conferencing scenarios outlined
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in Table 1, engaging 800 participants with demographics detailed
in Table 5. Scenarios 1 and 2 involve 100 participants each, while
Scenarios 3 and 4 have 300 participants each, yielding over 45,000
user ratings.

Age 18-25: 25.8%, 26-30: 27.0%
31-35: 16.4%, 35+: 30.8%

Gender Male: 60.3%, Female: 39.2%
Other: 0.5%
US: 50.0%, IN: 30.1%,

Country BR: 4.0%, IT: 5.7%,
(30 Total) UK: 2.2%, Other: 6.1%
Education Bachelor: 50.1%, Master: 26.3%

Ph.D.: 8.1%, Other: 15.5%
Table 5: Demographics of the 800 subjects in our user studies.

4.2 Generating Bitrate Combination Samples
Given a specific bandwidth 𝐵, the potential bitrate combinations
for distributing it among various media sources are infinite. Rather
than attempting to enumerate an exhaustive list of these combina-
tions, we need to strategically select a finite and representative set
of bitrate combination samples. Inspired by Zoom’s bitrate adap-
tation strategy, we create several quality levels for each media
source. These differentiated quality levels of media sources are then
combined, forming a selected set of bitrate combination samples.

We begin by producing benchmark media sources: an audio
stream at 128Kbps, a video at 720p resolution with 25FPS and a
bandwidth of 1.5Mbps, and a screen feed also at 720p and 25FPS
consuming 1.5Mbps. Then, we transcode these benchmarks across
a spectrum of quality levels. As shown in Table 6, we create 3 levels
for audio and 9 levels (3 FPS levels × 3 resolution levels) for both
video and screen. By combining different media sources together,
we craft a set of 27 (3×9), 27 (3×9), 243 (3×9×9), and 243 (3×9×9)
bitrate combination samples for Scenario 1, 2, 3, and 4, respectively.

Audio 128Kbps 32Kbps 8Kbps

Video 25FPS 15FPS 5FPS
720p 360p 180p

Screen 25FPS 15FPS 5FPS
720p 360p 180p

Table 6: Different quality levels of audio, video, and screen.

4.3 Calculating User Ratings

𝑈 =



0 𝑢1,2 · · · · · ·
.
.
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.

.
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.

.

. 0
. . .

. . .
.
.
.

.

.

. 0 · · · 0 𝑢𝑛−1,𝑛
0 · · · · · · · · · 0


(1)

To evaluate QoE across numerous bitrate combinations, we face
the challenge of managing the vast number of pairwise compar-
isons. With 𝑁 bitrate combination samples, the exhaustive pairwise
comparison approach would necessitate 𝑁 (𝑁 − 1)/2 comparisons,
which becomes unfeasible as 𝑁 increases. Specifically, we need
2351 comparisons in Scenarios 1 and 2 and 29403 in Scenarios 3
and 4, which is clearly impractical. To address this, we propose

the “accumulated score” method. It allows us to conduct 𝑁 compar-
isons but still receives results that closely approximate results from
𝑁 (𝑁 − 1)/2 comparisons [13]. Essentially, this method enables us
to deduce the entire user rating matrix𝑈 (as shown in Matrix 1) by
examining only a fraction of its elements. It works as follows.
Ranking Combination Samples. We rank all 𝑁 combination
samples by their bitrate, based on the assumption that a higher
bitrate typically means higher user preference. We compare each
pair of adjacent combinations, 𝑁𝑖 and 𝑁𝑖+1, where 𝑖 ranges from 1
to 𝑁 − 1. This yielded 𝑁 − 1 user ratings, namely 𝑢𝑖,𝑖+1.
Calculating Accumulated Scores. After comparison, we will get
𝑁 user ratings (𝑢𝑖,𝑖+1). We set the accumulated score for the combi-
nation with the lowest bitrate (the 𝑁 𝑡ℎ combination) to 0, namely
𝑢𝑁−1,𝑁 = 0. The accumulated score for the (𝑁−1)𝑡ℎ combination is
calculated by adding the accumulated score of the 𝑁 𝑡ℎ combination
(𝑎𝑐𝑐_𝑠𝑐𝑜𝑟𝑒𝑁 ) with the user rating obtained from the (𝑁 − 1)𝑡ℎ and
𝑁 𝑡ℎ combination comparison (𝑢𝑁−1,𝑁 ). Accordingly, we apply this
calculation sequentially to determine the accumulated scores for
all 𝑁 combinations by using the formula 2. These 𝑁 accumulated
scores are calculated on a per-user basis.

𝑎𝑐𝑐_𝑠𝑐𝑜𝑟𝑒𝑁 = 𝑢𝑁−1,𝑁 = 0
𝑎𝑐𝑐_𝑠𝑐𝑜𝑟𝑒𝑖 = 𝑎𝑐𝑐_𝑠𝑐𝑜𝑟𝑒𝑖+1 + 𝑢𝑖,𝑖+1, 𝑖 ∈ [1..𝑁 − 1] (2)

Obtaining All User Ratings. After obtaining the accumulated
scores for 𝑁 combinations, we are able to determine the user rating
between any two combinations by calculating the difference in their
accumulated scores, as shown in Formula 3. This approach enables
us to populate all the necessary elements in Matrix 1.

𝑢𝑖, 𝑗 = 𝑎𝑐𝑐_𝑠𝑐𝑜𝑟𝑒𝑖 − 𝑎𝑐𝑐_𝑠𝑐𝑜𝑟𝑒 𝑗 , 𝑖, 𝑗 ∈ [1..𝑁 − 1] (3)

5 QoE Modeling
To understand user ratings and user preference relationships, we
employ the PageRank algorithm [2] to establish a clear preference
hierarchy and derive QoE values. Building on these insights, we
create a QoE prediction model to predict QoE values for any given
media source combinations.

5.1 QoE Values
The PageRank algorithm evaluates our user study results using a
directed graph. Each node within this graph symbolizes a distinct
bitrate combination, with edges between nodes representing com-
parative user ratings that highlight preference relationships. Here
is a more detailed breakdown of the process.

• Node Creation. Each node in the graph corresponds to a
unique media source bitrate combination. These combinations are
directly derived from the scenarios presented in our user study.

• Edge Construction and Weight Assignment. The graph’s
edges are established based on the user ratings collected during the
study. Participants are given seven options to express their prefer-
ence between two combinations, i.e., Combination A is (1) much
better, (2) better, (3) slightly better, (4) similar, (5) slightly worse, (6)
worse, (7) much worse than/to Combination B. These verbal options
are then converted into a numerical scale of {3, 2, 1, 0,−1,−2,−3},
reflecting the degree of preference. An edge is drawn from node
B to node A if the rating indicates a preference for Combination
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A (rating > 0). Conversely, if the preference leans towards Com-
bination B (rating < 0), an edge is drawn from node A to node B.
The magnitude of the rating is used to assign weight to each edge,
quantitatively expressing the degree of preference.

• Assigning QoE Values. PageRank [2] calculates scores for
each node, effectively indicating the level of user preference for
each bitrate combination sample. We then rank these combination
samples, identifying those with higher scores as more favored by
users. Following this ranking, we assign QoE values based on each
combination’s position in the preference hierarchy; the top-ranked
or most preferred combination receives the highest possible QoE
value, while the least favored combination is assigned a QoE value
of 1. For scenarios 1 and 2, which feature 27 combinations, the QoE
value for the highest-ranked combination is 27. Similarly, scenar-
ios 3 and 4, each with 243 combinations, see their most preferred
combination receiving a QoE value of 243.

5.2 Model Design
The input parameters for the QoE model, specifically designed to
accommodate different scenarios, are detailed in Table 7.

Category Parameter
Audio [audio bitrate]
Video [video resolution, video framerate]
Screen [screen resolution, screen framerate]

Bandwidth [overall bitrate]
Others [ratio of window size between video and screen]

Table 7: Input parameters of each media source.
• Scenario 1: The input vector includes parameters specific to audio
and video, along with the total bitrate.
• Scenario 2: This vector is associated with audio, screen-sharing,
and the overall bitrate.
• Scenario 3 and 4: The input vector is all-encompassing, draw-
ing parameters from every category, notably audio, video, screen-
sharing, and the total bandwidth.
• General: The broad input vector aggregates parameters from
all relevant categories—audio, video, screen-sharing, total band-
width—and incorporates the newly introduced parameter of the
window size ratio between video and screen-sharing. This approach
ensures our QoE model’s generality and relevance across different
video conferencing scenarios.

In our analysis, we explore four distinct models, each meticu-
lously adjusted to optimize our prediction task:

(1) Logistic Regression: We set 𝑡𝑜𝑙 = 10−6, 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 = 0,
and 𝑠𝑜𝑙𝑣𝑒𝑟 = 𝑛𝑒𝑤𝑡𝑜𝑛_𝑐ℎ𝑜𝑙𝑒𝑠𝑘𝑦; This model is configured with a
tolerance level of 10−6, a 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 set to 0 for reproducibility,
and utilizes the 𝑛𝑒𝑤𝑡𝑜𝑛_𝑐ℎ𝑜𝑙𝑒𝑠𝑘𝑦 method as its solver.

(2) Random Forest Regression (RF): We specify 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 =

100, indicating the number of trees in the forest, and maintain a
𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 of 0 to ensure consistent results across different runs.

(3) Gradient Boosting Decision Tree (GBDT): This model em-
ploys 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 10, reflecting a more conservative approach
with ten trees, and a 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 of 0.1, balancing the speed and
accuracy of learning.

(4) Multi-layer Perceptron Regression (MLP): The MLP model is
adjusted with a learning rate of 10−6, employs a 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 activation
function, an 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 learning rate to adjust as learning progresses,

a 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 of 0 for reproducibility, and𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 2000, al-
lowing a generous number of iterations for convergence.

Our dataset is split into 80% training and 20% testing data. Using
Python and the scikit-learn package, we employ four regression
models and leverage ten-fold cross-validation (CV) [31] for training
and evaluation. CV folds are determined at the user level to ensure
unbiased results, as each user grades all videos and CV is performed
separately for each user.

6 Evaluation
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Figure 5: PageRank results with missing data.

6.1 Efficiency of Accumulated Score
This method evaluates consecutive combinations of media source
bitrates instead of comparing every possible pair. We validate this
approach through a simulation where five participants thoroughly
assess each potential pair of combinations for Scenario 1, allowing
us to create user rating matrices𝑈 directly.

For validation, we sequentially utilize 0%, 20%, 40%, 60%, 80%,
and 100% of the user rating data in𝑈 , interpolating missing values
using the “accumulated score” to create six corresponding matrices:
𝑈0, 𝑈20, ..., 𝑈100. Then, we compute the PageRank for every com-
bination sample across these six matrices, with results depicted in
Figure 5. The similar trends observed indicate that using the “accu-
mulated score” method aligns closely with the results of evaluating
all possible pairs.

To evaluate the consistency of ourmethod (𝑈0) with the approach
of comparing every pair (𝑈100), we use the SequenceMatcher in the
Python module to calculate the similarity in PageRank rankings be-
tween them. Achieving an average similarity score of 0.88 strongly
affirms the effectiveness and reliability of our accumulated score
methodology.

6.2 QoE Modeling Evaluation
Our QoE model is adept at predicting QoE values for specific com-
binations of media sources. This capability allows us to determine
whether a given combination achieves the optimal QoE. Further-
more, when presented with multiple combinations, the model en-
ables us to rank them based on their QoE performance.
• QoE Prediction Evaluation. We evaluate the accuracy of our
QoE predictions using two key metrics: Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE). Lower values in these
metrics indicate more accurate predictions, closely matching the
actual QoE values from user studies. As shown in Table 8, all tested
scenarios exhibit competitive MAE and RMSE scores, with Scenar-
ios 1 and 2 demonstrating slightly better performance, likely due
to the less complex nature of their bitrate combinations. Notably,
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Scenario Logistic RF GBDT MLP

MAE RMSE Accuracy MAE RMSE Accuracy MAE RMSE Accuracy MAE RMSE Accuracy

Scenario 1 0.12 0.92 82.13% 0.12 0.86 81.3% 0.15 0.93 82.1% 0.12 0.83 84.61%
Scenario 2 0.12 0.96 81.90% 0.13 0.87 82.15% 0.16 0.97 82.20% 0.11 0.85 84.55%
Scenario 3 0.15 2.81 78.79% 0.13 2.50 81.12% 0.16 2.87 81.04% 0.13 2.19 84.37%
Scenario 4 0.14 2.92 80.48% 0.11 2.28 82.06% 0.15 2.67 81.49% 0.12 2.24 82.62%
General 0.19 4.06 70.51% 0.09 1.75 81.63% 0.13 2.56 81.79% 0.08 1.78 82.86%

Table 8: Comparisons of the average MAE, RMSE, Accuracy (%) with Logistic, Random Forest, GBDT, MLP algorithms. The best
results are underlined.
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Figure 6: QoE comparison between Zoom, Webex, and Google Meet. Figures only show scenarios under 1.2Mbps.

the Multi-layer Perceptron (MLP) model achieves the lowest RMSE
and MAE across all scenarios.
•Combination Sets Ranking Evaluation. We assess the model’s
accuracy in ranking various combinations by comparing its pre-
dicted QoE ranking to those derived from actual user feedback.
According to Table 8, the models show promising performance
overall, with accuracy exceeding 70%. The MLP model, in particu-
lar, stands out by consistently achieving accuracy rates above 80%
in all scenarios.

In conclusion, our evaluation metrics underscore the model’s
effectiveness in precisely predicting QoE and in accurately ranking
combinations. The MLP model surpasses other models in every
scenario tested. Its robust performance across diverse scenarios
highlights its generality and suitability for enhancing user experi-
ence within VCAs.

6.3 QoE Evaluation of Three VCAs
In §3.3, we investigate the bandwidth allocation of three VCAs:
Zoom, Webex, and Google Meet. While this measurement provides
valuable insights, it leaves the open question of whether these
strategies truly align with user preferences or achieve the best
possible user experience.

To address this, we apply our general QoE model (MLP model) to
predict the QoE of Zoom, Webex, and Google Meet under restricted
downlink bandwidth conditions (0.2, 0.4, 0.6, 0.8, and 1 Mbps). We
use the QoE results from our user study as a benchmark (optimal
QoE) to compare against the actual QoE performance of these VCAs.

As depicted in Figure 6, under the same bandwidth constraints,
the performance of the three VCAs is far away from the optimal QoE
calculated using the MLP model. Among these, Zoom demonstrates
a higher QoE value compared to Webex and Google Meet in most
scenarios, suggesting its bandwidth allocation strategies are more

effective. Notably, the contrast between our benchmark and the
predicted QoE values from the VCAs becomes more pronounced
in Scenarios 2, 3, and 4 compared to Scenario 1. This significant
difference is likely influenced by screen-sharing, which appears to
affect the QoE outcome more severely in these scenarios.

7 Conclusion
Our research delves into the multimedia transmission capabilities
of Video VCAs, with a particular focus on three key media sources:
audio, video, and screen. Initially, we examine the bandwidth alloca-
tion strategies of three prominent VCAs—Zoom,Webex, and Google
Meet—paying special attention to their performance in networks
with limited bandwidth. Following this, we present a detailed case
study on Zoom to explore its bitrate adaptation strategies for each
media source when faced with network constraints about band-
width limits and packet loss. Building on the above analysis, we
propose a QoE model designed to predict QoE performance across
various scenarios and platforms accurately. The findings from our
evaluation demonstrate the model’s effectiveness and generality.
This model serves as a tool for VCAs to improve user experience
by providing valuable insights and recommendations, particularly
in scenarios with limited network resources.

However, our study still faces some limitations and requires fur-
ther exploration. First, our QoE model focuses solely on bandwidth
and does not consider other factors such as loss, jitter, and latency,
which we plan to explore in future studies. Second, we currently
use simple models, but we aim to design more complex and ad-
vanced models to achieve more accurate results as we incorporate
additional factors. Third, the accuracy of prediction results is not
very high because our model is designed to identify and cater to
the most prevalent user preferences.
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