
Livelyzer: Analyzing the First-Mile Ingest Performance of Live
Video Streaming

Xiao Zhu
University of Michigan

Subhabrata Sen
AT&T Labs – Research

Z. Morley Mao
University of Michigan

ABSTRACT
Over-the-top (OTT) live video traffic has grown significantly, fueled
by fundamental shifts in how users consume video content (e.g., in-
creased cord-cutting) and by improvements in camera technologies,
computing power, and wireless resources. A key determining factor
for the end-to-end live streaming QoE is the design of the first-mile
upstream ingest path that captures and transmits the live content in
real-time, from the broadcaster to the remote video server. This path
often involves either a Wi-Fi or cellular component, and is likely to
be bandwidth-constrained with time-varying capacity, making the
task of high-quality video delivery challenging. Today, there is little
understanding of the state of the art in the design of this critical
path, with existing research focused mainly on the downstream
distribution path, from the video server to end viewers.

To shed more light on the first-mile ingest aspect of live stream-
ing, we propose Livelyzer, a generalized active measurement and
black-box testing framework for analyzing the performance of this
component in popular live streaming software and services under
controlled settings. We use Livelyzer to characterize the ingest
behavior and performance of several live streaming platforms, iden-
tify design deficiencies that lead to poor performance, and propose
best practice design recommendations to improve the same.

CCS CONCEPTS
• Information systems→Multimedia streaming; •Networks
→ Network measurement.

KEYWORDS
live streaming, video ingest, performance, QoE, measurement
ACM Reference Format:
Xiao Zhu, Subhabrata Sen, and Z. Morley Mao. 2021. Livelyzer: Analyzing
the First-Mile Ingest Performance of Live Video Streaming. In 12th ACM
Multimedia Systems Conference (MMSys ’21) (MMSys 21), September 28-
October 1, 2021, Istanbul, Turkey. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3458305.3463375

1 INTRODUCTION
Live video streaming traffic has grown significantly, fueled by im-
provements in camera technologies, computing power, and wireless
resources. The rise of services such as Facebook and Youtube creates

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MMSys 21, September 28-October 1, 2021, Istanbul, Turkey
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8434-6/21/09. . . $15.00
https://doi.org/10.1145/3458305.3463375

global platforms to disseminate user-generated content. According
to a recent industry report [24], live video will account for more
than 15% of the Internet video traffic by 2022.

An end-to-end (E2E) live streaming pipeline consists of the ingest
and distribution paths shown in Figure 1. On the upstream ingest
path, the video is captured in real time by a camera, then fed into
a Broadcasting App that compresses the video and transmits it
to a remote Video Server owned by some streaming service over
a network connection, typically cellular or Wi-Fi. On receiving
the ingest stream, the video server transcodes it into a number
of different ABR tracks (referred to as ABR track ladder), each
corresponding to a different encoding quality level and bitrate. Each
track consists of several video segments (usually 2–10 seconds each).
Viewers watching the live stream request a mixture of segments
from the video server using adaptive bitrate (ABR) streaming [46]
over the downstream distribution path.

Video ServerBroadcasting App

Viewers
Upstream
ingest path

Downstream
distribution path

Figure 1: Live video streaming end-to-end workflow.

Existing studies have focused largely on the last-mile distribution
path from the video server to the viewers. There has been little
exploration of the first-mile ingest path from the broadcasting app
to the video server. However, this first mile is critical to the E2E
performance of the pipeline. The quality of the video delivered on
this first mile to the video server imposes an upper limit on the
quality of the ABR tracks created from it, and therefore on the
quality of experience (QoE) of the viewers of the live stream. In
addition to delivering a good quality video stream to the video
server, the first mile also needs to provide the content with low
latency. Any latency on the first mile impacts the overall E2E latency
for the end viewers (see §2.1). Improving the ingest performance
would therefore benefit the QoE of all the downstream viewers.
However, achieving this goal is also challenging due to the usually
more dynamic and limited wireless uplink resources (e.g., cellular
uplinks) and the complexity of the ingest path.

In this paper, we examine the all-important first-mile ingest
path in commercial live streaming platforms to understand their
performances and designs. Such insights can assist developers in
identifying deficiencies and creating designs with improved perfor-
mance and network providers to better understand and manage the
associated traffic [21, 59, 60]. Our goal is to analyze a wide range
of commercial live video broadcasting apps and streaming services

https://doi.org/10.1145/3458305.3463375
https://doi.org/10.1145/3458305.3463375
https://doi.org/10.1145/3458305.3463375

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey Xiao Zhu, Subhabrata Sen, and Z. Morley Mao

from an objective third-party point of view, in a controlled, repeat-
able, and fine-grained manner (§2.2). This task is made challenging
by the complex E2E pipeline, the proprietary closed-source soft-
ware components, and the wide diversity of designs across different
live streaming systems. The live nature of the content introduces
further challenges in conducting measurements (see §2.4).

In view of these challenges, we develop a generalized black-
box measurement methodology and tool, Livelyzer, for analyzing
the performance of the upstream ingest path for commercial live
streaming systems. Livelyzer enables third parties to conduct active
measurements to profile the performance under various network
conditions in a repeatable and controlled manner, thereby gaining
insights into the corresponding design. The design of Livelyzer and
its capabilities are detailed in §3.

We use Livelyzer to study a wide range of broadcasting apps
such as third-party, browser-based, and mobile-based broadcast-
ing apps streaming to commercial services including Facebook,
Youtube, and Twitch, using different video contents and network
conditions. In total, we study seven (broadcasting app, streaming
service) combinations. Our key findings are:
• Different broadcasting apps have very different encoding rate
control designs/configurations. Many of them use Constant Bit Rate
(CBR) encoding, leading to inefficient use of bits on the upstream
ingest path (§4.1).
• Different broadcasting apps behave very differently when the
network conditions change. Our evaluations show that while all the
broadcasting apps we study exhibit adaptation to changing uplink
network conditions, they differ widely in the specific adaptation
behavior and resulting ingest performance. Further, our results
suggest that the existing adaptation strategies have limitations and
sometimes lead to poor performance. For example, the Open Broad-
caster Software (OBS), by default, drops frames in an inefficient way
to cope with network condition degradation, leading to poor video
quality (§5.1.1). Although OBS recently introduced a “dynamic bi-
trate mode” for encoding rate adjustment, we find that the scheme
can largely under-utilize the newly available network resources
due to how it adapts the encoding bitrate when the network band-
width increases (§5.1.2). Browser-based (§5.2) and mobile-based
(§5.3) broadcasting apps also exhibit performance issues.
• We leverage Livelyzer to conduct a what-if analysis of the rate
adaptation logic and codec usage, in order to understand the im-
pact of different rate adaptation schemes and video codecs on the
live video ingest performance (§6). We show how even a relatively
straightforward adaptation strategy inspired by the findings of Live-
lyzer can help improve the performance (§6.1). We further assess
using a more efficient H.265 codec (widely supported in major desk-
top and mobile platforms) instead of the current commonly used
H.264, for live video encoding in broadcasting apps and demonstrate
its benefits under different network uplink conditions (§6.2).
• The video server design also has implications for QoE. For ex-
ample, we find that different services choose different segment
durations, making the ingest delay variable across different broad-
cast settings (§4.2).

2 BACKGROUND AND MOTIVATION
2.1 First Mile in Live Video Streaming
As mentioned in §1, an E2E live streaming pipeline consists of the
ingest and distribution paths (Figure 1). The E2E QoE of live stream-
ing is fundamentally constrained by a single video stream delivered
over the first-mile ingest path. First, the quality of the video de-
livered on this path to the video server imposes an upper limit on
the quality of the ABR tracks created from it, and therefore on the
QoE of the viewers of the live stream. Second, a player can only
download a video segment after the corresponding video content
is uploaded to the video server, imposing a latency dependency.

The broadcasting app, a critical component on the ingest path,
usually comes in three different forms [66]:
(1) Third-party broadcasting app: There exists standalone soft-

ware that captures and transmits videos to commercial live
streaming services. For example, Open Broadcaster Software
(OBS) [48] is a popular broadcasting app that supports live
streaming to many commercial services, which highly recom-
mend the use of it [13, 51, 67]. The widely used OBS software
supports RTMP (Real Time Messaging Protocol [3]), which is
also one of the main protocols that commercial video services
use.

(2) Browser-based broadcasting app: Many services such as
Facebook and Youtube provide GUIs to open cameras to capture
and stream real-time content from their web pages [12, 65].

(3) Mobile-based broadcasting app: Instead of using the browser,
smartphone users may prefer the service’s mobile app, which
also includes GUIs to open the camera and stream videos [11,
64].
Many live broadcasts are originated from mobile devices and

transmitted to remote servers using available connections such
as Wi-Fi or cellular. To understand how well today’s mobile up-
links support the needs of live video ingest, we measure the up-
link bandwidth relative to the live ingest bandwidth requirements
of commercial broadcasting apps. Specifically, we conduct uplink
throughput measurements by uploading a large file over multiple
LTE networks, covering various scenarios involving different move-
ment patterns, signal strengths, and locations. Our measurements
indicate that the uplink bandwidth exhibits significant variability
and can be lower than the sustained bandwidth requirements of
commercial broadcasting apps (∼1–4Mbps for many live stream-
ing systems). As an illustration, for each of the ten traces that we
collected, the 5𝑡ℎ percentile of the bandwidth values was less than
2.5Mbps. For four traces, the median observed uplink bandwidth
was less than 2.1Mbps. While 5G is expected to further improve
the bandwidth, the technology is not yet widely deployed, and has
its own challenges (e.g., directivity and sensitivity to blockage for
mmWave [37]). Therefore, it is important for applications that need
to use uplink cellular connections to be designed appropriately.

2.2 Design Goals
A sound measurement system for ingest path analysis should be
able to meet the following requirements.
G1 Enable interested entities such as a testing service or a network

operator (who usually do not have access to the detailed design

Livelyzer: Analyzing the First-Mile Ingest Performance of Live Video Streaming MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

of, or the source code for the software) to conduct third-party
measurements of the performance of a live streaming system.

G2 Be generally applicable to different live video broadcast and
distribution platforms instead of targeting a specific setup.

G3 Enable controlled and repeatable experiments.
G4 Be capable ofmeasuring performance dynamics at a fine timescale

and enable a tester to holistically reason about the design of
the live ingest pipeline.

2.3 Limitation of Existing Analysis Approaches
Existing live streaming analysis tools have several limitations. First,
they conduct limited ingest analysis. [31] focuses on the distribution
path, e.g., instead of directly measuring the video quality (§3.4), it
measures the end-viewer perceived video resolution, which charac-
terizes the downlink ABR performance instead of the ingest per-
formance. As §5 will show, the same resolution (ABR track) can
have very different quality due to the quality difference of the video
delivered on the ingest path. [44, 45] measure the overall E2E QoE
instead of for the ingest path, making it difficult to distinguish per-
formance issues on the ingest and distribution paths. They measure
different QoE metrics separately under different settings, making
it hard to correlate one metric with another. Besides, they mainly
focus on the overall session-level QoE instead of its fine-grained
dynamics over time. [54] focuses on measuring the delay aspect of
the QoE. Therefore, they are not able to meet G4.

Second, existing approaches are either broadcasting app-specific or
streaming service-specific and hard to generalize. [31] only focuses
on streaming from OBS, which provides a user interface to stream
local video files, making it hard to generalize to different commer-
cial broadcast platforms such as browser-based and mobile-based
broadcasting apps. [44, 45] and [54] rely on service-specific APIs
to measure the QoE. As a result, they fail to achieve the aforemen-
tioned G2.

Third, they do not meet the G3 requirement for controllable and
repeatable measurements. [45] and [54] watch online live streams
broadcast by other people, having no control of the video source
and network conditions. [44] shoots videos playing on a laptop
screen as the source, but it suffers from distortion and lighting
issues. Although [31] can guarantee the same input video source,
it is hard for it to control the network conditions under which its
data are collected due to its “in-the-wild” nature.

2.4 Challenges
Achieving the goals mentioned in §2.2 is not straightforward. In
addition to the live nature of the video content, the live streaming
pipeline is complex and heterogeneous. This creates the following
challenges that Livelyzer needs to address:

Complex pipeline. Live video ingest involves a complex pipeline.
A broadcasting app captures a video from a camera, encodes it us-
ing a codec with an encoding rate control1 scheme, and transmits
a sequence of video frames to the remote server over some net-
work connection. To cope with time-varying network conditions, a
broadcasting app may dynamically adapt its upstream transmission.

1In video coding, rate control means what an encoder does to determine how many
bits to spend for each frame to reach a target bitrate or quality level for the video.

Video Server
Broadcasting
App

Player

Video Source
(§3.3)

Virtual
Camera
(§3.2)

Traffic
Collector

Segment
Downloader
(§3.4)

Request
Intercepter

Network
Emulator

Livelyzer

Performance Analysis (§3.4)

Output frames (OF)
ABR tracks

Input
frames (IF)

Network
packets (NP)

Top ABR track (TAT)
+

Video manifests

Segments

Requests

Manifest
request (MR)

Traffic control
rules (TCR)

Live streaming pipeline

Test device side Analysis server side

Figure 2: The system architecture of Livelyzer.

There can be different ways of adjusting the amount of data to send
to the remote server, e.g., dropping frames or reducing the encoding
bitrate. The video server transcodes uploaded video frames into
ABR segments. Each of the above components plays an important
role and can impact the E2E QoE. This complexity makes it chal-
lenging to identify, exercise, and understand the key pieces that
impact the QoE.

Heterogeneous design. Different services can have very differ-
ent designs. Even for the same service, the broadcaster can choose
different broadcasting apps of different designs, such as the service’s
web page in a browser, its mobile app, or a broadcasting app from
third parties such as OBS. Unlike the distribution path where HTTP
Adaptive Streaming (HAS) is the predominant approach, there is
no single de facto delivery solution on the ingest path. In fact, there
exists a wide range of ingest solutions (e.g., RTMP [3], WebRTC [10],
FTL [23], DASH-IF Live Media Ingest [19], etc.) with varying levels
of publicly available specifications. This makes achieving G2 hard
for the ingest path.

Proprietary nature of systems. Live streaming systems usu-
ally run proprietary closed-source software. A third party typically
does not have visibility into the source code of broadcasting apps
and video servers. The uplink network traffic is also usually en-
crypted, e.g., broadcasting apps may use RTMPS [26] or WebRTC
with DTLS [42]. In addition, the increasing use of SSL pinning in
mobile applications [44] renders MITM proxy-based approaches
increasingly unusable.

Live nature of content. Unlike video on demand (VoD), where
the same content can be replayed across multiple experimental runs,
live streaming contents are generated in real time. This makes the
task of repeating experiments using the same source (G3) difficult.

Need for suitable performancemetrics.An end userwatches
a video that flows over both the ingest and distribution paths. While
there are well-defined QoE metrics (e.g., quality, stall ratio, startup
delay) for the distribution path, there are no well-defined or widely
accepted performance metrics for the ingest path. In §3.4 we shall
define such metrics of interest.

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey Xiao Zhu, Subhabrata Sen, and Z. Morley Mao

3 THE LIVELYZER MEASUREMENT SYSTEM
We build Livelyzer, a holistic measurement system that comprehen-
sively examines the ingest performance of different broadcasting
apps streaming to various services. As shown in Figure 2, Live-
lyzer interacts with the live streaming pipeline by generating video
source contents and uplink traffic control rules (TCR), monitoring
the upstream network packets (NP), and collecting ABR track and
manifest information. Livelyzer consists of components running on
a test device and an analysis server. The test device hosts different
broadcasting apps and part of our software that annotates source
videos (§3.3), injects them to broadcasting apps (§3.2), automates
measurement tasks, and sends local measurement data to our analy-
sis server after measurement sessions. The analysis server runs the
rest of our software, which downloads the top ABR track (TAT) and
video manifests, and later analyzes the ingest performance offline
(§3.4).

3.1 Black-box Testing
Ideally, wewould like to have visibility of every internal point on the
ingest path, e.g., the encoder output frames of the broadcasting app
(OF in Figure 2) and the application data in the network upstream.
However, as mentioned in §2, commercial streaming services and
broadcasting apps are usually closed systems. Hence, it is hard to
access either the ingest endpoint of the video server to gain visibility
into the uploaded frames or the encoder of the broadcasting app to
examine the compressed frames.

Given the lack of such internal visibility, we adopt a black-box
analysis approach. Specifically, we control both the input (i.e., the
video content) and the ingest components (e.g., broadcasting app,
streaming service, network condition, etc.), and observe the output
(e.g., quality of TAT). By changing the input or/and the ingest set-
tings (e.g., through issuing different TCR), we can observe how the
output would be affected, and reason about the ingest components.

Our method can test a specific broadcasting app streaming to a
particular service under various network conditions in a controlled
manner. Specifically, we use a network traffic control tool like
Linux tc to replay different network conditions based on real-world
network traces we collect. Livelyzer runs a traffic collector module
on the test device to collect packets on the ingest path. Livelyzer
also runs a segment downloader that collects video server output
for performance analysis (§3.4). For scalable testing, the broadcast
and playback processes are automated (e.g., through Android UI
automation and Selenium [43] for browser automation).

3.2 Virtual Video Capture Function
As mentioned in §2, we need to do measurements in a repeatable
way. This translates to two requirements: First, we need to be able to
feed the same video content to different broadcasting apps. Second,
we need to be able to provide the same video content to the same
broadcasting app across different runs. The first requirement comes
from our need to compare different broadcasting apps and stream-
ing services fairly. The second requirement is because, for the same
(broadcasting app, streaming service) setting, we may want to vary
a factor (e.g., network condition) over different runs and keep other
factors including the video source the same to examine the sole
impact of this specific factor on the ingest performance.

One way to address this is to capture the same scene using a real
camera. This approach has several issues: First, it is difficult to pro-
vide the same physical scene multiple times in the real world where
time and space cannot be reverted. Second, even if we can provide a
“repeatable” physical scene like [44] that plays a pre-recorded video
on another screen, this still makes it hard to keep the captured video
the same due to lighting-related dynamics. Furthermore, the video
captured by the camera can contain frames that are a composite of
multiple consecutive source frames in the pre-recorded video. This
can be caused by the exposure time of the camera capture process
lining up with the display times of those frames. Such composites
can cause harmful interactions with other components in Livelyzer,
such as source annotation (§3.3).

Some broadcasting apps such as OBS support local file input,
but not every broadcasting app supports this mode. For example,
browser-based broadcasting apps only support camera or screen
sharingmode, mobile-based broadcasting apps such as the Facebook
and Instagram apps only support camera mode. Screen sharing also
introduces non-deterministic distortions in the screen recording
process [58], making the video captured by a broadcasting app (i.e.,
the recorded screen) just an approximation of the source video.

To provide a universal interface to commercial broadcasting apps
for capturing repeatable video contents, we create a virtual camera
in Livelyzer. It takes a local video file as input and behaves like
a normal camera device from the perspective of a broadcasting
app. The video source can be fed into the virtual camera at differ-
ent frame rates. The virtual video capture function extracts the
sequence of frames from an input video file, and redirects them
to the virtual camera. The broadcasting app then captures input
frames (IF in Figure 2) by sampling these raw frames based on the
broadcasting app’s frame rate setting. In Linux, a virtual camera can
be realized using /dev/videoX. We leverage v4l2loopback [52]
to create such a new virtual video device. To capture video with it,
we use FFmpeg [15] to specify a local video file as the input and the
virtual video device as the output.

3.3 Crafting Video Source Files
Given the virtual camera, we still need to prepare the input video
content. To measure both frame loss and quality of delivered video
on the ingest path, we need to associate each frame in the received
video with its corresponding frame in the source.

Achieving frame alignment in live video ingest is challenging be-
cause the frames in the source and received videos are not naturally
aligned for several reasons. First, different broadcasting apps could
capture videos at different frame rates. Second, during transmission
to the remote video server, a broadcasting app may drop frames to
adapt to varying network conditions. Third, depending on when
it joins the live event, a player will not necessarily start playing a
video from the beginning of a broadcast. Therefore, the first frame
being played may be different from the first frame captured by
the broadcasting app. Also, depending on the extent of time syn-
chronization between when the camera is turned on and when the
broadcaster starts streaming to the remote video server, even the
first frame captured (to be encoded) by the broadcasting app may be
different from the first frame that is seen by the recording camera.

Livelyzer: Analyzing the First-Mile Ingest Performance of Live Video Streaming MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

One approach for achieving frame alignment would be to com-
pare every frame in the received video and every frame in the
source based on content similarity. However, the challenge with
this approach is that in the case of a static or a repeating scene, mul-
tiple frames in the source would be visually similar to each other. In
this case, a frame in the received video may be mapped to multiple
frames in the source, making unambiguous frame alignment hard.

To achieve frame alignment, we overlay a unique signature to
every source frame and leverage computer vision techniques to de-
tect the signatures from frames in the received video to match each
of them to a source frame. The signature should be robust to com-
pression artifacts (i.e., be still recognizable from low bitrate streams
created under poor network conditions). We leverage the Quick
Response (QR) code [57] to create this specific signature since it is
more robust than the approach of overlaying a sequence of digits
(e.g., a frame number) due to the QR code’s use of Reed–Solomon
error correction [56]. We empirically verified this when we were
researching suitable signature technologies in the early phase of
our study. In addition, we pad the source video with dummy frames
before and after the original video content tomake sure that the orig-
inal video content gets captured and eventually played regardless
of the level of time synchronization among different components.

3.4 Analyzing Ingest Performance
As mentioned in §2, we need to define performance metrics on the
ingest path that impact end-user QoE. The metrics we consider
are video quality, effective frame rate, ingest freshness, and ingest
smoothness (to be detailed shortly). To facilitate ingest performance
analysis, we need to measure the quality and timing of the stream
delivered to the video server. However, extracting video frames in
such a stream on the ingest path is challenging (§2.4). Instead, we
use the transcoded TAT to approximate the above stream, easily
accessible using standard HTTP APIs from the distribution path.
TAT is also more closely associated with end viewers’ experience as
players ultimately need to fetch video segments from ABR tracks,
and TAT represents the best quality encoding any user can receive.
Livelyzer runs a segment downloader on its analysis server to fetch
ABR tracks. We parse the corresponding live video manifest for
the session to obtain the address information for the TAT, which
is passed to our segment downloader for downloading the TAT
segments. During the live stream, the manifest is periodically up-
dated over time as new segments are generated at the server. Our
segment downloader fetches these updated versions at regular inter-
vals to extract the information required for computing the various
performance metrics described next.

Video quality.We examine the quality of video segments in the
top ABR track (TAT) created by the video server. TAT represents an
upper bound on the video quality experienced by any user served
by the video server. The video quality of the TAT depends on the
quality of the content received by the server on the ingest path,
which is the cumulative end result of all ingest activities (including
broadcasting app encoding and adaptation, network performance,
etc.).

For the specific video quality, we adopt Video Multimethod As-
sessment Fusion (VMAF) [27, 29, 30], which is a recently proposed

perceptual quality metric and has been shown to perform much bet-
ter than traditional video quality metrics that do not accurately cap-
ture human perception, such as Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index (SSIM) [55]. VMAF is a full-reference
model allowing us to measure the perceptual quality of a distorted
video by comparing it with regard to a pristine quality reference
of the same content. VMAF was originally designed for evaluat-
ing compression artifacts where the reference and distorted videos
have the same frame rate. In contrast, in the live video ingest use
case, the source video and TAT can have different frame rates (see
§3.3). Therefore, we first resample the TAT to match its frame rate
with the source video using FFmpeg [15]. We then use the frame
alignment step (§3.3) to align the first frame in the TAT (t1) with its
corresponding frame in the source (s1). Then we calculate VMAF
using the sequence of source frames starting from s1, as the refer-
ence sequence, and the sequence of TAT frames starting from t1,
as the distorted sequence. Since we are particularly interested in
the quality of the content consumed by mobile users, we use the
VMAF phone model (designed for small screens [28]) for VMAF
calculation. Since we are interested in measuring video quality at a
fine granularity over the video session, we use the arithmetic mean
of the VMAF values of all the frames in a segment as the segment’s
VMAF value, and analyze the distribution of per-segment VMAF
values [2, 40] across the session. Note that while we use VMAF for
the reasons stated above, Livelyzer can easily accommodate other
video quality metrics, e.g., PSNR and SSIM.

Effective frame rate. Broadcasting apps may capture frames at
a different frame rate (FPS) and drop frames when the network band-
width becomes insufficient. Besides, networks may drop frames,
and video servers may reduce frame rates as well. To quantify the
impact of frame loss, we define effective frame rate (effective FPS,
or eFPS), the number of distinct frames in each second in TAT. eFPS
equals FPS when there are no duplicate frames (i.e., every frame
is distinct). However, according to our observations (§5.1.1), video
servers may duplicate frames to maintain a constant FPS in ABR
tracks when the frame rate on the ingest path is variable. Therefore,
to compute eFPS, we consider only distinct frames by identifying
and removing duplicates using our frame annotation and alignment
methods (§3.3).

Ingest freshness.We are also interested in understanding the
latency impact of the ingest path, which affects the E2E broadcaster-
to-viewer (B2V) delay (§2.1) – a measure of how much a viewer is
behind the live event. To characterize ingest freshness, we define the
ingest delay for each ABR segment as the time elapsed from when
its first frame is generated at the source to when all the ABR track
ladder variants of that segment become available at the video server
for players to download. This segment-level delay is also more
related to end users’ experience compared to the frame-level delay
— a segment2 becomes available for players to download only after
all the frames in the segment arrive at the server and the different
ABR track variants for that segment have been created. The ingest
delay for a segment is the sum of the times spent on broadcasting
app encoding, network transmission, and server transcoding. The
ingest delay is part of the E2E B2V delay. Therefore, a longer ingest

2In this paper, we use segment to refer to the smallest unit of data that can be requested
by an end viewer, e.g., an ABR segment or a CMAF [17] chunk.

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey Xiao Zhu, Subhabrata Sen, and Z. Morley Mao

delay will lead to a longer E2E B2V delay, everything else remaining
the same. For each new updated version of the live manifest, we
extract the time 𝑡𝑠 that it was updated at the server. We mark the
arrival time as 𝑡𝑠 for all ABR segments that first appear in the latest
version of the manifest and were absent in earlier versions. The
generation time (𝑡𝑏) of the first frame of each segment is recorded at
the virtual camera. The ingest delay, or broadcasting-app-to-server
(B2S) delay of a segment, can thus be calculated as 𝑡𝑠 − 𝑡𝑏 .

Ingest smoothness. Once a viewer joins a live event, in order
to play a live stream smoothly without stalls, the player needs to get
subsequent ABR segments from the video server in a timely fashion.
This requires the ABR segments to be created and made available
for downstream players in a timely manner. However, during a live
stream, if the ingest delay increases significantly (e.g., because the
uplink bandwidth become very low for some time), the arrival of
the video frames at the video server and subsequent creation of
the corresponding ABR segments will be delayed, increasing the
chance that a player may not receive some segments in a timely
fashion and therefore experience stalls. While due to live streaming
freshness considerations, a player cannot stay far behind the live
edge, for many common use cases, the player can still start several
seconds behind the live edge (we define it as offset) and so can
tolerate some variability in the availability time of the segments.
Here, to measure the effect of this variability on user experience, we
assume a player with an X seconds offset behind the live edge (we
empirically set X = 10 in our experiments), and measure the stall
behavior due to segment availability time variability. We define the
stall ratio to be the aggregate stall duration as the percentage of
the total live video session duration.

4 USING LIVELYZER FOR LIVE VIDEO
ENCODING ANALYSIS

 20

 30

 40

 50

 60

 70

 80 120 160

T
I

SI

City
Concert
Talking

 0

 1000

 2000

 3000

 4000

City Concert Talking

B
it
ra

te
 (

k
b
p
s
)

OBS
S1-Web
S2-Web

S1-Mobile
S3-Mobile

Figure 3: Content complex-
ity measured by spatial in-
formation (SI) and tempo-
ral information (TI).

Figure 4: Encoding bitrate mea-
sured with different videos.

We next use Livelyzer to characterize the video encoding design
on the live streaming ingest path, spanning broadcasting apps’
encoding and video servers’ transcoding, both important QoE-
impacting components in the E2E live streaming pipeline (§2.1). We
first consider high network bandwidths scenarios to ensure that
the observed video outputs of the two components reflect their
inherent application logic and are not caused by any network band-
width limits. We shall later use this behavior as a baseline when we
explore more bandwidth-constrained situations in §5.

We use three different representative video contents as our broad-
cast sources: (1) City – a city view with a lot of detail, (2) Concert
– a live show that involves significant movement, (3) Talking – a
talking person with an almost static background. The videos are
obtained from Youtube in 1080p and 30fps. We select a 5-minute
long sample of each for this study. We stream the 720p variant of
the content (obtained by downscaling the 1080p reference to 720p)
as input to broadcasting apps, in line with industry recommenda-
tions [14], and use the original 1080p version as the pristine quality
reference when computing VMAF (§3.4). Figure 3 depicts the spatial
and temporal information [1], commonly used to characterize scene
complexity, for these videos. Each data point in Figure 3 represents
an individual segment from the corresponding video.

The three commercial services we examine are denoted as S1, S2,
and S3 in the rest of the paper. We use the terms Web and Mobile
to refer to the browser-based and mobile-based broadcasting apps,
respectively, for each service.

4.1 Encoding Design of Broadcasting Apps
We first study the encoding bitrates of videos created by different
broadcasting apps covering common broadcast use cases (§2.1).
As mentioned earlier, experiments in this section are conducted
under high-bandwidth network conditions, so the encoder should
not be constrained by any bandwidth concerns3. This scenario
represents the best-case performance of commercial broadcasting
apps - we shall use it as a baseline when studying the rate adaptation
performance of these systems under real-world network conditions
when the upstream network bandwidth is not plentiful and is time-
varying (§5).

Figure 4 shows the encoding bitrate distributions for different
contents encoded by different broadcasting apps. We measure these
values from the uplink network traffic by computing the data send-
ing rates over time. Since we cannot extract the precise Group of
Pictures (GOP) structure used by the different commercial broad-
casting apps (e.g., due to traffic encryption), we use 6 seconds as the
interval to compute each bitrate sample. For OBS, we only present
its encoding bitrate distribution when streaming to S1 as the results
for streaming to S2 and S3 are very similar.

We make two main observations. First, different broadcasting
apps have very different outputs with different encoding bitrate dis-
tributions even for the same content, suggesting different encoding
settings, e.g., mobile-based broadcasting apps tend to use consis-
tently higher bitrates than OBS and browser-based broadcasting
apps.

Second, different broadcasting apps have very different encoding
rate control behaviors. The OBS encoding bitrate is tightly con-
centrated around 2.7Mbps across all the content, suggesting the
use of a CBR encoding independent of the content type. S1-Web,
however, produces encodings with average bitrates and bitrate
spreads that differ for different content – this is more consistent
with VBR-like encoding behaviors. Other broadcasting apps, such
as the mobile-based broadcasting apps, exhibit modest bitrate varia-
tions: the bitrates are within 18% and 8% of the corresponding mean
values for S1 and S3’s mobile-based broadcasting apps, respectively.

3We leverage our source video padding (§3.3) to ensure that the bitrate has already
“ramped up” when the actual video content comes.

Livelyzer: Analyzing the First-Mile Ingest Performance of Live Video Streaming MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

 0

 1000

 2000

 3000

 4000

City Concert Talking

B
it
ra

te
 (

k
b

p
s
)

(a)

OBS-to-S1
OBS-to-S2

OBS-to-S2 (Low)
OBS-to-S2 (Ultra)

OBS-to-S3
Web-to-S1

Web-to-S2
Mobile-to-S1

Mobile-to-S3

 40

 60

 80

 100

City Concert Talking

V
M

A
F

(b)

 0

 5

 10

 15

 20

In
g
e
s
t
D

e
la

y
 (

s
)

(c)

Figure 5: (a) Bitrate distribution of TAT. (b) Quality of TAT. (c) Broadcasting-app-to-server delay of segments in TAT.

They exhibit similar bitrate spreads for encoding the three different
video contents.

Above, we observe that many broadcasting apps we study use
CBR. Given that VBR has advantages over CBR, such as being able
to achieve higher video quality with the same average bitrate or
provide the same quality with a lower bitrate encoding to better
accommodate to bandwidth constraints [40], one potential research
direction is to explore using VBR encoding in broadcasting apps.

4.2 Server ABR Transcoding Design
We now study how different services transcode a received live
video stream into ABR tracks. We focus on the top ABR track (TAT),
which represents the highest-quality stream that end viewers could
enjoy. Any quality impairment observed in this track is entirely
caused by the ingest component. We measure the bitrate, duration,
frame rate, and ingest delay of each segment in this track.

Figure 5(a) shows the bitrate distribution of the TAT created by
different services’ remote video servers. For OBS streaming to S2,
we include three modes that S2 provides for RTMP ingest: default
normal mode, low latency mode (denoted as Low), and ultra-low
latency mode (marked as Ultra). As shown, different video servers
also have very different encoding (transcoding) bitrate distributions
for encoding the same content, similar to different broadcasting
apps do (§4.1). However, here the content dependency compared to
broadcasting apps’ encodings appears to be higher overall: many
video servers (e.g., S1’s video server receiving streams from OBS
and S2’s video server receiving streams from S2-Web) use fewer
bits to encode less complex content such as the “Talking” video.
Also, we observe that the “dependence” between broadcasting apps’
encoding bitrates and the ABR transcoding bitrates differ among
services. For example, OBS encoding is very CBR-like (§4.1) while
the corresponding S1 video server creates content-dependent VBR
encodings. However, for OBS streaming to S3, the bitrate distribu-
tions of OBS encoding and that of S3 server transcoding are very
similar (both centered around 2.7Mbps).

Table 1 shows the duration and frame rate of segments created
by different servers. As shown, the segment duration can be very
different depending on the service and broadcast platform. Later
we shall see how the segment duration affects the ingest delay.

4.3 QoE Impact
We next examine how different encoding rate control schemes in
broadcasting apps and video servers affect the end viewer QoE.

Table 1: Comparison of server ABR transcoding design.

Streaming
service

Broadcasting
app

Mode Segment
duration

Frame
rate

S1
OBS N/A 2s 30 fps
S1-Web N/A 2s 30 fps
S1-Mobile N/A 2s 24 fps

S2
OBS

normal 5s 30 fps
low latency 2s 30 fps
ultra-low latency 1s 20-30 fps

S2-Web N/A 1s 20-30 fps

S3
OBS N/A 2s 30 fps
S3-Mobile N/A 5s 30 fps

Figure 5(b) shows the video quality of TAT created by each
video server. Usually, a change of 6 or more VMAF points would be
noticeable to a viewer. We observe that even under unconstrained
uplink network conditions, the video quality is not always high. The
“Talking” video has a much higher quality than the other two videos,
likely a result of its relatively lower content complexity. Overall,
settings with both high encoding bitrates at the broadcasting app
and server sides (e.g., S1-Mobile and S3-Mobile) also have a high
video quality.

Figure 5(c) shows the ingest delay (§3.4). Overall we can see a
correlation between the delay and the segment duration shown
in Table 1: the larger the segment duration, the higher the ingest
delay even though the broadcasting app is not necessarily doing
segmented delivery to the server. The reason for the correlation is:
(1) The ingest delay of a segment covers the time between when
its first frame is generated at the source and when its last frame
is uploaded to the ingest server, which depends on the segment’s
duration, (2) transcoding a larger segment usually takes longer
than transcoding a shorter one. We also observed differences across
services. For instance, both S2 (normal mode) and S3-Mobile use 5s
as the segment duration, while S3-Mobile has a much shorter ingest
delay than S2.

5 USING LIVELYZER FOR NETWORK RATE
ADAPTATION ANALYSIS

Next, we study how different broadcasting apps adapt their up-
stream transmission to cope with network dynamics, and the re-
sulting impact on performance. As mentioned in §2.1, there can
be different ways of adjusting the amount of data to send to the

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey Xiao Zhu, Subhabrata Sen, and Z. Morley Mao

 0

 20

 40

 60

 80

 100

A B C D E F Ideal

V
M

A
F

60% 90% 120%

(a) Stream to S1

 0

 20

 40

 60

 80

 100

A B C D E F Ideal
V

M
A

F

60% 90% 120%

(b) Stream to S2

 0

 20

 40

 60

 80

 100

A B C D E F Ideal

V
M

A
F

60% 90% 120%

(c) Stream to S3

 0

 2

 4

 6

 8

 10

B
it
ra

te
 (

M
b
p
s
) Bandwidth

Tx rate

 0

 20

 40

 60

 80

 100

V
M

A
F

 0
 5

 10
 15
 20
 25
 30

 0 50 100 150 200 250 300

E
ff
e
c
ti
v
e
 F

P
S

Time(s)

Figure 6: Video quality of OBS streaming to different services: each network trace
(A-F) is scaled to 60%/90%/120% of the baseline video encoding bitrate

Figure 7: OBS drops frames to adapt
to changing network conditions.

 0

 20

 40

 60

 80

 100

A B C D E F Ideal

V
M

A
F

60% 90% 120%

(a) Stream to S1

 0

 20

 40

 60

 80

 100

A B C D E F Ideal

V
M

A
F

60% 90% 120%

(b) Stream to S2

 0

 20

 40

 60

 80

 100

A B C D E F Ideal

V
M

A
F

60% 90% 120%

(c) Stream to S3

 0
 2
 4
 6
 8

 10

B
it
ra

te

(M
b
p
s
) Bandwidth

Tx rate

 0
 25
 50
 75

 100

V
M

A
F

 0
 1
 2
 3

 0 50 100 150 200 250 300

E
n
c
o
d
in

g

b
it
ra

te
 (

M
b
p
s
)	

		

Time(s)

Figure 8: Video quality of OBS dynamic bitrate mode streaming to different services:
each network trace (A-F) is scaled to 60%/90%/120% of the baseline video encoding bitrate

Figure 9: OBS-dynamic in-
creases encoding bitrate slowly
when bandwidth increases.

network, e.g., dropping frames or reducing encoding bitrates. To
understand the adaptation behavior, we measure the performance
evolution across time and correlate it with the corresponding pre-
vailing network bandwidth condition.

We focus on the “Concert” video with a medium content com-
plexity across the three videos we have (Figure 3). We leverage the
network condition emulation feature of Livelyzer (§3.1) to replay
six real-world network bandwidth traces. For each of the six cellular
uplink traces (denoted as A, B, C, D, E, and F, whose coefficients of
variation are 1.11, 0.90, 0.84, 0.65, 1.08, and 0.69, respectively), we
create three variants as follows for each broadcasting app. We pro-
portionally scale the per-second bandwidth values in a trace such
that the average bandwidth of the resulting scaled trace becomes
either 60%, 90%, or 120% of the average of the encoding bitrate time
series output by that app under plentiful uplink network conditions
(§4.1). This, in total, creates 6 × 3 = 18 different network conditions
for replay for each broadcasting app.

5.1 Using Third-party Broadcasting App: OBS
We start with understanding the third-party OBS broadcasting app.
We consider both the default OBS and OBS with dynamic bitrate
adaptation mode enabled (denoted as OBS-dynamic). Starting with
OBS version 24 back in 2019, “dynamic bitrate mode” was added as
an optional scheme to replace the default rate adaptation scheme.
We use these two schemes to stream videos to S1, S2, and S3. For
S2, we focus on its default normal streaming mode (§4.2).

5.1.1 Default OBS. Figure 6 overviews the quality of the video
streaming from OBS to different services under the 18 different
network conditions described above. For comparison, we also show
the baseline video quality under ideal network conditions measured
in §4. In general, the higher the average bandwidth, the higher the
video quality we observe. The instantaneous network bandwidth
and its variability over time also also have an impact on video
quality. For example, trace D has the lowest coefficient of variation,
leading to a relatively better video quality than others. Overall, the
VMAF values show considerable degradation compared to the results
under no bandwidth constraints (§4.2): the (25𝑡ℎ percentile, median)
VMAF averaged over the 18 network conditions is decreased by (64%,
31%), (62%, 28%), and (66%, 34%) compared to the baseline for S1, S2,
and S3, respectively. Besides, we still observe low quality especially
in the tail of the distribution (e.g., 5𝑡ℎ and 25𝑡ℎ percentiles of the
VMAF distribution) even when the average network bandwidth for
a network condition is high (e.g., 120% of the encoding bitrate). The
average stall ratio (defined in §3.4) across different traces is 3.5%,
1.0%, and 2.1% for S1, S2, and S3, respectively (not shown in the
figures).

To understand the root cause for such performance degradation,
we plot the evolution of network bandwidth, data sending rate,
video quality, as well as the effective frame rate of a typical live video
ingest session across time, as shown in Figure 7. This figure shows
an example of how OBS performs when the upload bandwidth
availability changes over time according to one trace. As shown,
there are still many low-bandwidth periods even when the average

Livelyzer: Analyzing the First-Mile Ingest Performance of Live Video Streaming MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

bandwidth is high (120% of the encoding bitrate in this case). In
high-bandwidth periods, even if the bandwidth is higher than the
baseline encoding bitrate, due to the real-time nature of the live
video stream, the additional bandwidth availability cannot be used
to further improve the video quality. We also see a relationship
among the network bandwidth, VMAF, and the effective frame rate
(effective FPS, defined in §3.4): when the network experiences low-
bandwidth periods, the effective FPS in the top ABR track (TAT)
is very low (e.g., zero), leading to low VMAF values and choppy
video quality. The measured low effective FPS is likely because
some frames get dropped before reaching the ABR server.

To further explore the above, we instrument the OBS source
code4 to collect frame management information. We find that the
default OBS broadcasting app drops frames when the network band-
width becomes insufficient to support the configured video encoding
bitrate. We also note that the frame drop process is bursty – sequences
of consecutive frames are dropped. Some bursts can be as large as 2s
worth of frames, leading to poor video experience during that time.
We also examined the TAT created by different streaming servers.
We find that S1 and S2 duplicate frames to maintain a constant high
frame rate, although the effective frame rate (§3.4) still remains
low. S3 adopts a different strategy – it does not fill the gaps in the
sequence with duplicate frames and uses discontinuous presenta-
tion times (PTS) to indicate the presence of gaps so that the player
knows when to render each frame.

5.1.2 OBS dynamic bitrate mode. We now study the performance
of this new mode under the same network conditions as in Figure 6.
Overall, the video quality is improved compared to the default OBS
rate adaptation (see Figure 8). However, there are some scenarios
when the quality becomes worse, such as when using trace E with
its average bandwidth scaled to 60% of the encoding bitrate. The
stall ratio is 4.3%, 0.8%, and 2.1% for S1, S2, and S3, respectively.

To understand why OBS-dynamic sometimes has worse perfor-
mance than the default OBS adaptation, we examine the different
performance metrics across time. Figure 9 shows an example run
for this broadcast setting. We find that the network resource fre-
quently becomes under-utilized: even if during many periods the
bandwidth is higher than the baseline OBS encoding bitrate, the
broadcasting app does not leverage the increased bandwidth to
reach the baseline bitrate. The VMAF can stay low even after the
network bandwidth rapidly improves from a low value, e.g., even if
the bandwidth is only very low at a few points, the near-zero poor
VMAF lasts more than 30s.

To understand the root cause for the above behavior, we further
instrument the corresponding dynamic bitrate adaptation module
of OBS. Specifically, we log the encoding bitrate decision over time,
as shown in the bottom subfigure of Figure 9. We can see that
the encoding bitrate increases relatively infrequently (every ∼30s),
and it increases very little at each step. By examining its source
code, we find that although OBS-dynamic reduces its encoding
bitrate whenever the network condition degrades from good, it
only increases the encoding bitrate very gradually over time, when
the network connection starts recovering from a poor bandwidth
condition. Specifically, it reduces the encoding bitrate when the
measured frame buffer occupancy is high and sets the new encoding
4Unlike many other broadcasting apps, OBS is open-source

bitrate to the buffer drain rate, which approximates the available
network bandwidth. When the current encoding bitrate is lower
than the baseline bitrate, the scheme only checks whether it is safe
to increase encoding bitrate every 30s based on the frame buffer
occupancy: if the buffer occupancy is low, it would increases the
encoding bitrate. Worse, every time OBS-dynamic decides to in-
crease the bitrate, it only increases the bitrate by a fixed amount
(𝑚𝑎𝑥𝐵𝑖𝑡𝑟𝑎𝑡𝑒

10) and keeps probing until it reaches𝑚𝑎𝑥𝐵𝑖𝑡𝑟𝑎𝑡𝑒 , which
is the default encoding bitrate specified by the system/user, regard-
less of the current network condition. As a result, even when the
network condition already becomes good right after a temporal outage
at around 170s, it takes OBS more than 100s to fully recover to the
default encoding bitrate under high network bandwidth conditions.
In §6.1, we show how this rate adaptation logic can be improved
by demonstrating our proposed rate adaptation scheme.

5.2 Using Browser-based Broadcasting Apps
We now study the browser-based broadcasting apps, specifically
the S1-Web and S2-Web broadcasting apps. S3 does not support
sending streams from a browser and requires either a third-party
broadcasting app or the service’s own mobile app for broadcasting.

5.2.1 S1-Web. As shown in Figure 10a, under many settings, S1-
Web still has high quality video encoding despite network band-
width constraints. However, this leads to high stalls, as shown in
Figure 10b, an example run under trace B scaled to 60% of the origi-
nal video encoding bitrate. The average stall over different traces
is 11% – the highest stall ratio across different broadcasting apps
that we studied. This suggests that S1-Web tends to maintain a
relatively high data sending rate, which can overshoot the network
when the bandwidth is limited, leading to a high stall ratio despite
maintaining a relatively high video encoding quality.

 0

 20

 40

 60

 80

 100

A B C D E F Ideal

V
M

A
F

60% 90% 120%

(a) Quality distribution

 0

 2

 4

 6

 8

 10
B

it
ra

te
 (

M
b
p
s
) Bandwidth

Tx rate

 0

 20

 40

 60

 80

 100

V
M

A
F

 0
 50

 100
 150
 200
 250
 300

 0 50 100 150 200 250 300In
g
e
s
t
P

ro
g
re

s
s
 (

s
)

Time(s)

Stall

(b) Example run

Figure 10: Browser-based broadcast to S1.

5.2.2 S2-Web. S2-Web has very different behavior from S1-Web.
As shown in Figure 11a, most of the scenarios exhibit low video
quality, e.g., even the 95𝑡ℎ percentile VMAF values of the first six
settings are all less than 30. On deeper exploration, we find that
once the bandwidth increases after a period of drops, S2-Web still
keeps sending data at a low rate instead of increasing it to the
baseline data rate (∼2Mbps, §4.1), as exemplified by Figure 11b. The
average stall ratio (0.7%) is much lower compared to S1-Web.

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey Xiao Zhu, Subhabrata Sen, and Z. Morley Mao

 0

 20

 40

 60

 80

 100

A B C D E F Ideal

V
M

A
F

60% 90% 120%

(a) Quality distribution

 0

 2

 4

 6

 8

 10

B
it
ra

te
 (

M
b
p
s
)

Bandwidth
Tx rate

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50 100 150 200 250 300

V
M

A
F

Time(s)

(b) Example run

Figure 11: Browser-based broadcast to S2.

5.3 Using Mobile-based Broadcasting Apps
We next study the S1 and S3 mobile app broadcast performances.
The S2 mobile app broadcast feature requires the streaming account
to have more than 1000 subscriptions, making it difficult to conduct
experiments, and is not studied.

5.3.1 S1-Mobile. Figure 12a shows the video quality distribution.
We find that the broadcasting app increases the data sending rate
slowly when the network conditions recover, missing opportunities
to increase the encoding bitrates and thereby the video quality,
similar to the behavior of OBS-dynamic. Figure 12b shows such
an example: when the network condition recovers at t ≈ 70s, the
broadcasting app’s data sending rate increases very slowly, making
the VMAF recovery slow as well. The stall ratio is 4.2% on average
across different settings.

 0

 20

 40

 60

 80

 100

A B C D E F Ideal

V
M

A
F

60% 90% 120%

(a) Quality distribution

 0

 2

 4

 6

 8

 10

B
it
ra

te
 (

M
b
p
s
)

Bandwidth
Tx rate

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50 100 150 200 250 300

V
M

A
F

Time(s)

(b) Example run

Figure 12: Mobile-based broadcast to S1.

5.3.2 S3-Mobile. Weobserve relatively high video quality, as shown
in Figure 13a. However, we also observe severe stalls, 6.3% on aver-
age. Figure 13b shows an example run where a stall occurs when the
network bandwidth drops at t ≈ 180s. The video quality decrease
indicates that S3-Mobile does adapt to the network bandwidth reduc-
tion by reducing the encoding bitrate. But the stall keeps occurring,
which suggests that S3-Mobile’s rate adaptation is sub-optimal and
can be improved (in this case, it still overshoots a little, causing an
extra stall at t ≈ 275s).

To summarize, our measurements show a vast diversity of perfor-
mances across different scenarios, suggesting different broadcasting
apps and services choose different points in the design spaces for

 0

 20

 40

 60

 80

 100

A B C D E F Ideal

V
M

A
F

60% 90% 120%

(a) Quality distribution

 0

 2

 4

 6

 8

 10

B
it
ra

te
 (

M
b
p
s
) Bandwidth

Tx rate

 0

 20

 40

 60

 80

 100

V
M

A
F

 0
 50

 100
 150
 200
 250
 300

 0 50 100 150 200 250 300In
g
e
s
t
P

ro
g
re

s
s
 (

s
)

Time(s)

Stall

(b) Example run

Figure 13: Mobile-based broadcast to S3.

the live streaming ingest pipeline. This reinforces the need for tools
like Livelyzer to analyze systems and understand their performance
profiles as well as their strengths and weaknesses.

6 IMPROVING UPSTREAM INGEST DESIGN
It is vital to deliver the content on the first mile at high quality with
minimal impairments, as it becomes the source reference used for
the ABR track encoding and streaming delivery to end users, and
its quality constrains the end-user QoE (§2.1). However, the limited
bandwidth and variability on the first mile make this task difficult,
as shown by our characterization of existing designs (§5).

In this section, we conduct a what-if analysis to explore the
potential of two techniques for improving the video quality on the
first mile: (1) suitable rate adaptation to better adapt to network
conditions (§6.1), and (2) using more efficient codecs (§6.2).

6.1 Improving Rate Adaptation Logic
For ABR streaming, rate adaptation has been studied extensively
on the distribution path from the server to the client, with the
latter dynamically selecting from different variants over time. On
the ingest path, there is a single variant being transmitted, and
any adaptation would involve dynamically changing the encoding
bitrate. Conceptually, an adaptation scheme that tailors the video
bitrate to the actual network bandwidth variability should be able
to deliver better video QoE. However, there has been much less
research on the rate adaptation for the live streaming ingest case.

§5 shows that while the existing broadcasting apps seem to
have rate adaptation schemes built in, their performances could be
further improved. For example, §5.1.2 indicates that when the band-
width increases from a low level, OBS-dynamic’s encoding bitrate
always increases by a fixed delta at 30s intervals, irrespective of
the actual network bandwidth, leading to suboptimal performance
(e.g., Figure 9).

To understand the potential improvements possible with a better
adaptation logic, we design a simple proof-of-concept rate adap-
tation scheme that better adapts to changes in the available band-
width. Our algorithm works as follows. In every epoch, we compute
a new encoding bitrate for the next epoch based on the predicted
uplink bandwidth for the next epoch. The new encoding bitrate
is calculated as𝑚𝑖𝑛{(1 − 𝜂) × 𝐵𝑊 ,𝑚𝑎𝑥𝐵𝑖𝑡𝑟𝑎𝑡𝑒} where 𝐵𝑊 is the
predicted throughput for the next epoch, 𝜂 ∈ (0, 1) is a tunable pa-
rameter introduced to control the aggressiveness of the adaptation

Livelyzer: Analyzing the First-Mile Ingest Performance of Live Video Streaming MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

algorithm in terms of bandwidth consumption, and𝑚𝑎𝑥𝐵𝑖𝑡𝑟𝑎𝑡𝑒 is
the maximum video encoding bitrate specified by the system/user.

We implement this new adaptation logic in OBS the open-source
broadcasting app. We denote it as OBS-adapt and compare it with
the default OBS and OBS-dynamic adaptation schemes. We use the
following bandwidth prediction approach. In our network band-
width trace-driven experiments, we take the average of the band-
width values for the past N epochs as the estimated network band-
width for the next epoch for input to OBS-adapt. We empirically
set 𝜂 to 25%, 𝑁 to 4, and the epoch to be 2s.

Figures 14, 15, and 16 show the video quality associated with
streaming from OBS to S1, S2, and S3, respectively, under the 18
different network conditions described earlier for OBS. As shown,
OBS-adapt noticeably improves the video quality across different
network conditions. The (25𝑡ℎ percentile, median) VMAF averaged
over the 18 network conditions and three services for OBS-adapt
improves by (29.9, 21.7) and (14.5, 12.1) compared to OBS and OBS-
dynamic, respectively. The average stall ratio is similarly low for
all three schemes, with OBS-adapt being slightly lower: 2.2%, 2.4%,
and 1.7%, for OBS, OBS-dynamic, and OBS-adapt, respectively.

 0

 20

 40

 60

 80

 100

60% 90%
A

120% 60% 90%
B

120% 60% 90%
C

120% 60% 90%
D

120% 60% 90%
E

120% 60% 90%
F

120%

V
M

A
F

OBS
OBS-dynamic

OBS-adapt

Figure 14: Ingest performance comparison of the default
and improved OBS streaming to S1.

 0

 20

 40

 60

 80

 100

60% 90%
A

120% 60% 90%
B

120% 60% 90%
C

120% 60% 90%
D

120% 60% 90%
E

120% 60% 90%
F

120%

V
M

A
F

OBS
OBS-dynamic

OBS-adapt

Figure 15: Ingest performance comparison of the default
and improved OBS streaming to S2.

 0

 20

 40

 60

 80

 100

60% 90%
A

120% 60% 90%
B

120% 60% 90%
C

120% 60% 90%
D

120% 60% 90%
E

120% 60% 90%
F

120%

V
M

A
F

OBS
OBS-dynamic

OBS-adapt

Figure 16: Ingest performance comparison of the default
and improved OBS streaming to S3.

To better understand the reason for the observed performance
improvements, we consider an example experimental run under
one bandwidth profile. As shown in Figure 17, OBS-adapt’s VMAF
values remain high compared to OBS and OBS-dynamic. Although
OBS-dynamic also adjusts its encoding bitrate to cope with the
network condition, compared to OBS-adapt, it frequently under-
utilizes the available network resources. Specifically, it selects a
much lower encoding bitrate than the available network bandwidth,

due to its specific adaptation logic when the available network
bandwidth increases from a low value (e.g., at t ≈ 70s and t ≈
155s). In contrast, OBS-adapt is able to better adapt to the same
changing bandwidth conditions, leading to better video quality. The
default OBS adaptation scheme drops frames instead of adjusting
the encoding bitrate, leading to frequent very low quality periods.

 0
 3
 6
 9

B
it
ra

te
 (

M
b

p
s
)

Bandwidth OBS OBS-dynamic OBS-adapt

 0

 50

 100

V
M

A
F

 0
 1
 2
 3

 0 50 100 150 200 250 300

E
n

c
o

d
in

g

b
it
ra

te
 (

M
b

p
s
)	

		
		

Time(s)

Figure 17: Example run showing the network bandwidth,
data rate, video quality, and encoding bitrate decision evo-
lution over time.

The above results clearly show that even a relatively straightfor-
ward adaptation strategy that fully accounts for network bandwidth
changes can significantly improve the delivered quality on the in-
gest path compared to the current state of the art, even under
challenging network conditions. Note that developing an overall
optimized adaptation strategy on the ingest path is not straightfor-
ward and involves various challenges, distinct from the adaptation
on the distribution path. We leave the development of a full-fledged
ingest adaptation strategy to future work.

6.2 Using More Efficient Codecs
We next explore the potential of using more advanced codec tech-
nologies with greater compression efficiencies, which require fewer
bits to encode the same quality compared to the widely used H.264
to improve the quality of the delivered video on the ingest path.

We conduct a what-if-analysis to answer this question, using
H.265 [49] as the example advanced codec. H.265/HEVC has signif-
icantly higher encoding efficiency than H.264/AVC [8]. Optimized
software and hardware implementations are widely deployed in
devices, making it the second most widely used video coding format
after H.264 [6]. Existing literature has focused either on comparing
the encoder outputs across codecs or on the downstream delivery
from the video server to end users. There is little quantitative un-
derstanding of the utility of using H.265 instead of H.264 on the
ingest path.

To fill this gap, we characterize H.265-enabled live video ingest
and compare its performance with the original H.264 counterpart
under real-world cellular uplink network conditions. Since popular
commercial live video broadcasting apps and streaming services
do not yet support H.2655, we had to set up our own H.265 live
video ingest testbed for this analysis. Specifically, we leverage the
NGINX-RTMPmodule [4] on top of the NGINX server as our RTMP
5Youtube provides APIs for H.265 with HLS ingest. However, it is not widely used by
broadcasting apps yet and can inflate delay compared to RTMP-based ingest.

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey Xiao Zhu, Subhabrata Sen, and Z. Morley Mao

ingest endpoint. We port the popular x265 codec [53] to OBS and
add support for H.265 decoding to NGINX-RTMP, following the
H.265 decoder configuration record format specified in ISO/IEC
standards [16].

Figure 18 shows the resulting video quality under identical net-
work conditions, when using H.265 compared to H.264 encoding
with the OBS broadcasting app with our proposed OBS-adapt adap-
tation scheme (§6.1). The (25𝑡ℎ percentile, median) VMAF score
averaged over the 18 network conditions is increased by (17.4, 7.0)
points compared to H.264. The average stall ratios under both codec
settings are very similar (∼1.1%).

 0

 20

 40

 60

 80

 100

60% 90%

A

120% 60% 90%

B

120% 60% 90%

C

120% 60% 90%

D

120% 60% 90%

E

120% 60% 90%

F

120%

V
M

A
F

H.264

H.265

Figure 18: H.264 vs. H.265 for OBS-adapt to NGINX.

Recall that in §6.1, we compare different rate adaptation schemes
by streaming from OBS with H.264. Now we further study how
various adaptation schemes perform under H.265. As shown in Fig-
ure 19, our proposed scheme improves the video quality compared
to the default OBS and OBS-dynamic under different network con-
ditions. The (25𝑡ℎ percentile, median) VMAF score averaged over
the 18 network conditions is increased by (49.9, 26.3) points and
(8.3, 6.4) points compared to OBS and OBS-dynamic, respectively.
The stall ratio is similar for the different schemes: 1.2%, 1.5%, and
1.1%, for OBS, OBS-dynamic, and OBS-adapt, respectively.

 0

 20

 40

 60

 80

 100

60% 90%
A

120% 60% 90%
B

120% 60% 90%
C

120% 60% 90%
D

120% 60% 90%
E

120% 60% 90%
F

120%

V
M

A
F

OBS
OBS-dynamic

OBS-adapt

Figure 19: Ingest performance comparison of default and im-
proved OBS streaming to NGINX with H.265.

The above results illustrate that using a combination of an im-
proved codec and a better rate adaptation scheme can help improve
the quality delivered from the broadcasting app to the video server.
Note that the improved video quality enabled by H.265 comes at
the cost of increased coding-related computation overhead. The
average broadcast device CPU utilization we measure is 6.2% and
14.0% for H.264 and H.265 streaming, respectively. This is a trade-off
that should be considered depending on the use case, e.g., when
broadcasting with a smartphone with a limited battery.

7 RELATEDWORK
Analyzing live video streaming. There have been recent studies
on both the technical aspects [9, 31, 39, 44, 45, 54, 68] and human
factors [22, 47, 50] of live video streaming. [44, 45, 54] used service-
specific APIs to study Periscope and Facebook Mobile. [31] studied
360-degree live streaming fromOBS to Facebook and Youtube. Com-
pared to these studies, our work differs in two significant ways:

First, we focus on the upstream ingest path. Second, their method-
ologies are based on specific service features compared to our more
general measurement approach.

Improving live streaming performance. [41] attempted to
enhance time-shifted live streaming by slightly sacrificing the QoE
of live users to greatly enhance the QoE for VoD users watching
the same video later. [35] dealt with improving the CDN systems
for live video delivery. [25] proposed the use of super-resolution
to save bandwidth on the ingest path. [5] developed downstream
bandwidth prediction techniques for ABR adaptation of low-latency
chunked live streaming. Low-latency variants, including LL-DASH [18]
and LL-HLS [38], have been recently proposed to reduce the latency
on the distribution path.

Video conferencing.There have been studies onmeasuring [61]
and improving [20, 69, 70] video conferencing performance. Unlike
video conferencing that usually has tens of milliseconds of latency
requirements, live streaming can tolerate several seconds of end-to-
end latency and usually needs a transcoding server for ABR track
creation. As a result, existing studies on video conferencing focus
on how to reduce latency. They also assume the use of WebRTC.
Unlike these studies on video conferencing, we found that com-
mercial live streaming ingest typically incurs a much higher delay
(several seconds), and many broadcasting apps buffer frames to a
large extent. The use of UDP/WebRTC is also less common for live
video ingest (§2.4).

Video on demand shares content distribution paths with live
streaming. There have been recent studies on measuring [60, 62],
inferring [7, 32, 33, 36], and improving [34, 40, 63] on-demand video
streaming QoE. [60] built a general testbed to measure commercial
VoD services by leveraging the common features of video players
and distribution standards. However, live video ingest has different
characteristics and new challenges for measurements. [62] mea-
sured ABR rate adaptation on the distribution path. Although [62]
supports streaming real-time contents, its “ingest path” is simplified
to receiving live TV signals over antennas.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we explore the first-mile ingest aspect of live stream-
ing. We develop Livelyzer, a generalized active measurement and
black-box testing framework for analyzing the performance of this
component in popular live streaming software and services under
controlled settings. We use Livelyzer to characterize the ingest
behavior and performance of several live streaming platforms, iden-
tify design deficiencies that lead to poor performance, and propose
best practice design recommendations to improve the same.

Future directions include evaluating the live ingest pipeline for
other types of different network conditions beyond LTE, e.g., 5G,
broadband, etc. Another direction would be conducting in-depth
exploration of the different streaming protocols used on the ingest
path, e.g., DASH-IF Live Media Ingest.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers and Peshala Pahalawatta for
their valuable comments. This material was based upon work par-
tially supported byNSF under grants CCF-1628991 andCNS-1629763.

Livelyzer: Analyzing the First-Mile Ingest Performance of Live Video Streaming MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

REFERENCES
[1] ITU-T P. 910. 2008. Subjective Video Quality Assessment Methods for Multimedia

Applications.
[2] Adeel Abbas. 2020. Introducing VMAF percentiles for video quality measure-

ments. https://blog.twitter.com/engineering/en_us/topics/infrastructure/2020/
introducing-vmaf-percentiles-for-video-quality-measurements.html

[3] Adobe. 2012. Adobe’s Real Time Messaging Protocol. https://www.adobe.com/
content/dam/acom/en/devnet/rtmp/pdf/rtmp_specification_1.0.pdf.

[4] Roman Arutyunyan. 2020. NGINX-based Media Streaming Server. https://github.
com/arut/nginx-rtmp-module.

[5] Abdelhak Bentaleb, Christian Timmerer, Ali C Begen, and Roger Zimmermann.
2019. Bandwidth prediction in low-latency chunked streaming. In Proceedings of
the 29th ACM Workshop on Network and Operating Systems Support for Digital
Audio and Video. 7–13.

[6] Bitmovin. 2019. Bitmovin Video Developer Report 2019. https://cdn2.hubspot.
net/hubfs/3411032/Bitmovin%20Magazine/Video%20Developer%20Report%
202019/bitmovin-video-developer-report-2019.pdf.

[7] Francesco Bronzino, Paul Schmitt, Sara Ayoubi, Guilherme Martins, Renata Teix-
eira, and Nick Feamster. 2020. Inferring streaming video quality from encrypted
traffic: Practical models and deployment experience. ACM SIGMETRICS Perfor-
mance Evaluation Review 48, 1 (2020), 27–28.

[8] Jan De Cock, Aditya Mavlankar, Anush Moorthy, and Anne Aaron. 2016. A
large-scale video codec comparison of x264, x265 and libvpx for practical VOD
applications. In Applications of Digital Image Processing XXXIX, Vol. 9971. Inter-
national Society for Optics and Photonics, 997116.

[9] Jie Deng, Gareth Tyson, Felix Cuadrado, and Steve Uhlig. 2017. Internet scale
user-generated live video streaming: The Twitch case. In International Conference
on Passive and Active Network Measurement. Springer, 60–71.

[10] Google Developers. 2020. Real-time communication for the web. https://webrtc.
org.

[11] Facebook. 2020. FB: How to Go Live on Mobile? https://www.facebook.com/
business/help/1884140525218868.

[12] Facebook. 2020. How do I go live frommy Facebook Page? https://www.facebook.
com/help/1916203341847533.

[13] Facebook. 2020. How do I set up streaming software to work with Facebook?
https://www.facebook.com/help/755943624557739.

[14] Facebook. 2020. What are the video format guidelines for live streaming on
Facebook? https://www.facebook.com/help/1534561009906955.

[15] FFmpeg. 2021. A complete, cross-platform solution to record, convert and stream
audio and video. https://ffmpeg.org

[16] International Organization for Standardization. 2014. ISO/IEC 14496-15:2014
Information technology — Coding of audio-visual objects — Part 15: Carriage
of network abstraction layer (NAL) unit structured video in ISO base media file
format. https://www.iso.org/standard/65216.html

[17] International Organization for Standardization. 2020. ISO/IEC 23000-19:2020
Information technology — Multimedia application format (MPEG-A) — Part
19: Common media application format (CMAF) for segmented media. https:
//www.iso.org/standard/79106.html.

[18] DASH Industry Forum. 2020. Low-latency Modes for DASH. https://dashif.org/
docs/CR-Low-Latency-Live-r8.pdf.

[19] DASH Industry Forum. 2021. DASH-IF Live Media Ingest Protocol Technical
Specification, 26 February 2021. https://dashif-documents.azurewebsites.net/
Ingest/master/DASH-IF-Ingest.html.

[20] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S Wahby, and
Keith Winstein. 2018. Salsify: Low-latency network video through tighter in-
tegration between a video codec and a transport protocol. In 15th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 18).

[21] Maximilian Grüner, Melissa Licciardello, and Ankit Singla. 2020. Reconstructing
proprietary video streaming algorithms. In 2020 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 20).

[22] Oliver L Haimson and John C Tang. 2017. What makes live events engaging on
Facebook Live, Periscope, and Snapchat. In Proceedings of the 2017 CHI conference
on human factors in computing systems. 48–60.

[23] Dexter Tan Guan Hao. 2019. Mixer’s Faster Than Light streaming protocol
explained. https://dotesports.com/streaming/news/mixers-faster-than-light-
streaming-protocol-explained.

[24] Cisco Visual Networking Index. 2019. Forecast and Methodology 2017–2022.
Cisco: San Jose, CA, USA (2019).

[25] Jaehong Kim, Youngmok Jung, Hyunho Yeo, Juncheol Ye, and Dongsu Han.
2020. Neural-Enhanced Live Streaming: Improving Live Video Ingest via Online
Learning. In Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, architectures, and
protocols for computer communication. 107–125.

[26] Emily Krings. 2021. What is RTMPS and Why is it Important to Secure
Streaming? https://www.dacast.com/blog/rtmps-streaming/#:~:text=that%20it%
20provides.-,RTMP%20vs.,stream%20with%20the%20secure%20alternative

[27] Zhi Li, Anne Aaron, Ioannis Katsavounidis, Anush Moorthy, and Megha
Manohara. 2016. Toward A Practical Perceptual Video Quality Met-
ric. https://medium.com/netflix-techblog/toward-a-practical-perceptual-video-
quality-metric-653f208b9652

[28] Zhi Li, Christos Bampis, Julie Novak, Anne Aaron, Kyle Swanson, AnushMoorthy,
and Jan De Cock. 2018. VMAF: The Journey Continues. https://netflixtechblog.
com/vmaf-the-journey-continues-44b51ee9ed12

[29] Joe Yuchieh Lin, Tsung-Jung Liu, Eddy Chi-Hao Wu, and C-C Jay Kuo. 2014. A
fusion-based video quality assessment (FVQA) index. In Signal and Information
Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific.
IEEE, 1–5.

[30] Tsung-Jung Liu, Yu-Chieh Lin, Weisi Lin, and C-C Jay Kuo. 2013. Visual quality
assessment: recent developments, coding applications and future trends. APSIPA
Transactions on Signal and Information Processing 2 (2013).

[31] Xing Liu, Bo Han, Feng Qian, and Matteo Varvello. 2019. LIME: understanding
commercial 360° live video streaming services. In Proceedings of the 10th ACM
Multimedia Systems Conference. 154–164.

[32] Tarun Mangla, Emir Halepovic, Ellen Zegura, and Mostafa Ammar. 2020. Drop
the packets: using coarse-grained data to detect video performance issues. In Pro-
ceedings of the 16th International Conference on emerging Networking EXperiments
and Technologies. 71–77.

[33] Tarun Mangla, Ellen Zegura, Mostafa Ammar, Emir Halepovic, Kyung-Wook
Hwang, Rittwik Jana, and Marco Platania. 2018. VideoNOC: Assessing video
QoE for network operators using passive measurements. In Proceedings of the
9th ACM Multimedia Systems Conference. 101–112.

[34] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural adaptive
video streaming with pensieve. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. 197–210.

[35] Matthew K Mukerjee, David Naylor, Junchen Jiang, Dongsu Han, Srinivasan
Seshan, and Hui Zhang. 2015. Practical, real-time centralized control for cdn-
based live video delivery. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication. 311–324.

[36] Ashkan Nikravesh, Qi Alfred Chen, Scott Haseley, Xiao Zhu, Geoffrey Challen,
and Z Morley Mao. 2018. QoE inference and improvement without end-host
control. In 2018 IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 43–57.

[37] Yong Niu, Yong Li, Depeng Jin, Li Su, and Athanasios V Vasilakos. 2015. A
survey of millimeter wave communications (mmWave) for 5G: opportunities and
challenges. Wireless networks 21, 8 (2015), 2657–2676.

[38] Roger Pantos. 2020. HTTP Live Streaming 2nd Edition. https://tools.ietf.org/
html/draft-pantos-hls-rfc8216bis-07.

[39] Karine Pires and Gwendal Simon. 2015. YouTube live and Twitch: a tour of
user-generated live streaming systems. In Proceedings of the 6th ACM multimedia
systems conference. 225–230.

[40] Yanyuan Qin, Shuai Hao, Krishna R Pattipati, Feng Qian, Subhabrata Sen, Bing
Wang, and Chaoqun Yue. 2018. ABR streaming of VBR-encoded videos: char-
acterization, challenges, and solutions. In Proceedings of the 14th International
Conference on emerging Networking EXperiments and Technologies. 366–378.

[41] Devdeep Ray, Jack Kosaian, KV Rashmi, and Srinivasan Seshan. 2019. Vantage:
optimizing video upload for time-shifted viewing of social live streams. In
Proceedings of the ACM Special Interest Group on Data Communication. 380–393.

[42] Eric Rescorla, Hannes Tschofenig, and Nagendra Modadugu. 2018. The Datagram
Transport Layer Security (DTLS) Protocol Version 1.3. https://tools.ietf.org/id/
draft-ietf-tls-dtls13-01.html.

[43] Selenium. 2021. Selenium automates browsers. https://www.selenium.dev
[44] Matti Siekkinen, Teemu Kämäräinen, Leonardo Favario, and Enrico Masala. 2018.

Can you see what I see? Quality-of-experience measurements of mobile live video
broadcasting. ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM) 14, 2s (2018), 1–23.

[45] Matti Siekkinen, Enrico Masala, and Teemu Kämäräinen. 2016. A first look at
quality of mobile live streaming experience: the case of periscope. In Proceedings
of the 2016 Internet Measurement Conference. 477–483.

[46] Iraj Sodagar. 2011. The mpeg-dash standard for multimedia streaming over the
internet. IEEE multimedia 18, 4 (2011), 62–67.

[47] Denny Stohr, Tao Li, Stefan Wilk, Silvia Santini, and Wolfgang Effelsberg. 2015.
An analysis of the YouNow live streaming platform. In 2015 IEEE 40th local
computer networks conference workshops (LCN Workshops). IEEE, 673–679.

[48] OBS Studio. 2020. Open Broadcast Software. https://obsproject.com/.
[49] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand. 2012.

Overview of the high efficiency video coding (HEVC) standard. IEEE Transactions
on circuits and systems for video technology 22, 12 (2012), 1649–1668.

[50] John C Tang, Gina Venolia, and Kori M Inkpen. 2016. Meerkat and periscope: I
stream, you stream, apps stream for live streams. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems. 4770–4780.

[51] Twitch. 2020. Twitch Recommended Software for Broadcasting. https://help.
twitch.tv/s/article/recommended-software-for-broadcasting?language=en_US.

[52] umlaeute. 2020. v4l2loopback - a kernel module to create V4L2 loopback devices.
https://github.com/umlaeute/v4l2loopback.

[53] VideoLAN. 2021. x265. https://www.videolan.org/developers/x265.html

https://blog.twitter.com/engineering/en_us/topics/infrastructure/2020/introducing-vmaf-percentiles-for-video-quality-measurements.html
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2020/introducing-vmaf-percentiles-for-video-quality-measurements.html
https://www.adobe.com/content/dam/acom/en/devnet/rtmp/pdf/rtmp_specification_1.0.pdf
https://www.adobe.com/content/dam/acom/en/devnet/rtmp/pdf/rtmp_specification_1.0.pdf
https://github.com/arut/nginx-rtmp-module
https://github.com/arut/nginx-rtmp-module
https://cdn2.hubspot.net/hubfs/3411032/Bitmovin%20Magazine/Video%20Developer%20Report%202019/bitmovin-video-developer-report-2019.pdf
https://cdn2.hubspot.net/hubfs/3411032/Bitmovin%20Magazine/Video%20Developer%20Report%202019/bitmovin-video-developer-report-2019.pdf
https://cdn2.hubspot.net/hubfs/3411032/Bitmovin%20Magazine/Video%20Developer%20Report%202019/bitmovin-video-developer-report-2019.pdf
https://webrtc.org
https://webrtc.org
https://www.facebook.com/business/help/1884140525218868
https://www.facebook.com/business/help/1884140525218868
https://www.facebook.com/help/1916203341847533
https://www.facebook.com/help/1916203341847533
https://www.facebook.com/help/755943624557739
https://www.facebook.com/help/1534561009906955
https://ffmpeg.org
https://www.iso.org/standard/65216.html
https://www.iso.org/standard/79106.html
https://www.iso.org/standard/79106.html
https://dashif.org/docs/CR-Low-Latency-Live-r8.pdf
https://dashif.org/docs/CR-Low-Latency-Live-r8.pdf
https://dashif-documents.azurewebsites.net/Ingest/master/DASH-IF-Ingest.html
https://dashif-documents.azurewebsites.net/Ingest/master/DASH-IF-Ingest.html
https://dotesports.com/streaming/news/mixers-faster-than-light-streaming-protocol-explained
https://dotesports.com/streaming/news/mixers-faster-than-light-streaming-protocol-explained
https://www.dacast.com/blog/rtmps-streaming/#:~:text=that%20it%20provides.-,RTMP%20vs.,stream%20with%20the%20secure%20alternative
https://www.dacast.com/blog/rtmps-streaming/#:~:text=that%20it%20provides.-,RTMP%20vs.,stream%20with%20the%20secure%20alternative
https://medium.com/netflix-techblog/ toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://medium.com/netflix-techblog/ toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://netflixtechblog.com/vmaf-the-journey-continues-44b51ee9ed12
https://netflixtechblog.com/vmaf-the-journey-continues-44b51ee9ed12
https://tools.ietf.org/html/draft-pantos-hls-rfc8216bis-07
https://tools.ietf.org/html/draft-pantos-hls-rfc8216bis-07
https://tools.ietf.org/id/draft-ietf-tls-dtls13-01.html
https://tools.ietf.org/id/draft-ietf-tls-dtls13-01.html
https://www.selenium.dev
https://obsproject.com/
https://help.twitch.tv/s/article/recommended-software-for-broadcasting?language=en_US
https://help.twitch.tv/s/article/recommended-software-for-broadcasting?language=en_US
https://github.com/umlaeute/v4l2loopback
https://www.videolan.org/developers/x265.html

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey Xiao Zhu, Subhabrata Sen, and Z. Morley Mao

[54] Bolun Wang, Xinyi Zhang, Gang Wang, Haitao Zheng, and Ben Y Zhao. 2016.
Anatomy of a personalized livestreaming system. In Proceedings of the 2016
Internet Measurement Conference. 485–498.

[55] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image
quality assessment: from error visibility to structural similarity. IEEE transactions
on image processing 13, 4 (2004), 600–612.

[56] Wikipedia. [n.d.]. Reed–Solomon error correction. https://en.wikipedia.org/
wiki/Reed%E2%80%93Solomon_error_correction

[57] Wikipedia. 2020. QR code. https://en.wikipedia.org/wiki/QR_code.
[58] Shichang Xu, Eric Petajan, Subhabrata Sen, and Z Morley Mao. 2020. What you

see is what you get: measure ABR video streaming QoE via on-device screen
recording. In Proceedings of the 30th ACM Workshop on Network and Operating
Systems Support for Digital Audio and Video. 60–66.

[59] Shichang Xu, Subhabrata Sen, and Z Morley Mao. 2020. CSI: inferring mobile
ABR video adaptation behavior under HTTPS and QUIC. In Proceedings of the
Fifteenth European Conference on Computer Systems. 1–16.

[60] Shichang Xu, Subhabrata Sen, Z Morley Mao, and Yunhan Jia. 2017. Dissect-
ing VOD services for cellular: performance, root causes and best practices. In
Proceedings of the 2017 Internet Measurement Conference. 220–234.

[61] Yang Xu, Chenguang Yu, Jingjiang Li, and Yong Liu. 2012. Video telephony for
end-consumers: measurement study of Google+, iChat, and Skype. In Proceedings
of the 2012 Internet Measurement Conference. 371–384.

[62] Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi
Zhang, Philip Levis, and Keith Winstein. 2020. Learning in situ: a randomized
experiment in video streaming. In 17th {USENIX} Symposium on Networked

Systems Design and Implementation ({NSDI} 20). 495–511.
[63] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A control-

theoretic approach for dynamic adaptive video streaming over HTTP. In Proceed-
ings of the 2015 ACMConference on Special Interest Group on Data Communication.

[64] Youtube. 2020. Create a live stream on mobile – Android – Youtube Help. https:
//support.google.com/youtube/answer/9228390?hl=en.

[65] Youtube. 2020. Create a live stream via webcam – Youtube Help. https://support.
google.com/youtube/answer/9228389?hl=en&ref_topic=9257984.

[66] Youtube. 2020. How to Live Stream On Youtube – How Youtube Works. https:
//www.youtube.com/howyoutubeworks/product-features/live/#youtube-live.

[67] Youtube. 2020. YouTube Live verified encoders. https://support.google.com/
youtube/answer/2907883?hl=en&ref_topic=9257984#zippy=%2Csoftware-
encoders.

[68] Cong Zhang and Jiangchuan Liu. 2015. On crowdsourced interactive live stream-
ing: a twitch. tv-based measurement study. In Proceedings of the 25th ACM Work-
shop on Network and Operating Systems Support for Digital Audio and Video.

[69] Huanhuan Zhang, Anfu Zhou, Jiamin Lu, RuoxuanMa, Yuhan Hu, Cong Li, Xinyu
Zhang, Huadong Ma, and Xiaojiang Chen. 2020. OnRL: improving mobile video
telephony via online reinforcement learning. In The 26th Annual International
Conference on Mobile Computing and Networking. 1–14.

[70] Anfu Zhou, Huanhuan Zhang, Guangyuan Su, Leilei Wu, Ruoxuan Ma, Zhen
Meng, Xinyu Zhang, Xiufeng Xie, Huadong Ma, and Xiaojiang Chen. 2019. Learn-
ing to Coordinate Video Codec with Transport Protocol for Mobile Video Tele-
phony. In The 25th Annual International Conference on Mobile Computing and
Networking. 1–16.

https://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction
https://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction
https://en.wikipedia.org/wiki/QR_code
https://support.google.com/youtube/answer/9228390?hl=en
https://support.google.com/youtube/answer/9228390?hl=en
https://support.google.com/youtube/answer/9228389?hl=en&ref_topic=9257984
https://support.google.com/youtube/answer/9228389?hl=en&ref_topic=9257984
https://www.youtube.com/howyoutubeworks/product-features/live/##youtube-live
https://www.youtube.com/howyoutubeworks/product-features/live/##youtube-live
https://support.google.com/youtube/answer/2907883?hl=en&ref_topic=9257984##zippy=%2Csoftware-encoders
https://support.google.com/youtube/answer/2907883?hl=en&ref_topic=9257984##zippy=%2Csoftware-encoders
https://support.google.com/youtube/answer/2907883?hl=en&ref_topic=9257984##zippy=%2Csoftware-encoders

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 First Mile in Live Video Streaming
	2.2 Design Goals
	2.3 Limitation of Existing Analysis Approaches
	2.4 Challenges

	3 The LIVELYZER Measurement System
	3.1 Black-box Testing
	3.2 Virtual Video Capture Function
	3.3 Crafting Video Source Files
	3.4 Analyzing Ingest Performance

	4 Using Livelyzer for Live Video Encoding Analysis
	4.1 Encoding Design of Broadcasting Apps
	4.2 Server ABR Transcoding Design
	4.3 QoE Impact

	5 Using Livelyzer for Network Rate Adaptation Analysis
	5.1 Using Third-party Broadcasting App: OBS
	5.2 Using Browser-based Broadcasting Apps
	5.3 Using Mobile-based Broadcasting Apps

	6 Improving Upstream Ingest Design
	6.1 Improving Rate Adaptation Logic
	6.2 Using More Efficient Codecs

	7 Related Work
	8 Conclusions and Future Work
	References

