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ABSTRACT Manufacturers are constantly looking to enhance the performance of their manufacturing
systems by improving their ability to address disruptions and disturbances, while reducing cost and
maximizing quantity and quality. Even though innovative mechanisms for adaptability and flexibility
continuously contribute to the smart manufacturing evolutionary process, they generally stop short of
providing a capability for coordinated on-line learning. This is especially true when that learning requires
exploration outside of established operational boundaries or uses artificial intelligence (as opposed to
purely human intelligence) as part of the dynamic implementation of learning. In this work, we provide
a vision for the development of an automated learning control architecture to extend the adaptability and
flexibility capabilities of manufacturing systems. As part of this vision, we describe a set of requirements and
objectives that, if addressed, provide an environment to allow distributed and automated learning across the
manufacturing ecosystem. We then provide an example communication and control architecture that meets
these requirements and objectives by gathering information, building a dynamic knowledge base, distributing
intelligence, making decisions, and adapting the control commands sent to the equipment and people across
the manufacturing ecosystem. The example architecture leverages both centralized and distributed control
strategies and the ability to switch between the strategies to gather and learn from information in the system.
Example case studies are provided illustrating how this architecture can be used to improve manufacturing
system performance.

INDEX TERMS Smart manufacturing, system-level control, industrial automation, cyber-physical systems,
adaptation and learning, multi-agent systems.

I. INTRODUCTION
The need to design more adaptive and flexible manufacturing
systems that perform effectively in uncertain and dynamic
environments has been one of the main lessons of the recent
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COVID-19 pandemic crisis. During the pandemic, manu-
facturers struggled with fulfilling a number of new product
orders andmeeting customer requirements caused by a signif-
icant shift in demand [6], [7]. As shown in Figure 1, a number
of research trends over the past several decades have focused
on this objective. Various approaches have been developed to
integrate and improve dynamic decision making and learning
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FIGURE 1. The effect of the development of dynamic decision making
and learning capabilities for manufacturing system adaptability and
flexibility. The arrows indicate how recent trends are pushing
manufacturing toward increased adaptability and flexibility through
dynamic decision making and learning. The dashed, blue arrow shows
how the work proposed in this paper contributes to this trend.

within the manufacturing system control strategy to achieve
more system adaptability and flexibility. However, there is
still a significant amount of work required to create fully
flexible and adaptable manufacturing systems that learn and
make decisions in a dynamic environment. A vision for a
control architecture that can move past its predefined capa-
bilities, learn from new information, and improve its dynamic
decision making capabilities based on newly obtained infor-
mation needs to be realized.

Centralized and distributed control approaches are two of
the most common methodologies that are used when devel-
oping control architectures [8]. In the centralized control
architecture, functions are delegated to the system compo-
nents (e.g., robots, workstations, etc.) to perform individual
operations, while the centralized decision maker has the full
authority for their initiation, coordination, and monitoring.
A centralized control architecture is effective in ensuring that
a manufacturing system meets customer and manufacturer
requirements and objectives. However, the centralized control
architecture often struggles with going past predefined capa-
bilities and learning from new information due to the inherent
complexity of using a global view of the manufacturing sys-
tem (e.g., large time and computational complexity for tasks
such as updatingmodels, analyzing information). This type of
architecture has been implemented in the majority of existing
manufacturing systems [9].

In the distributed control architecture, a complex global
control problem is divided into smaller local problems, each
linked to an intelligent control unit, i.e., an agent. Due to
the presence of multiple decision makers and knowledge
bases, a distributed control architecture will often implement
algorithms that allow the agents to move past predefined
capabilities and learn from information in the manufacturing
system. However, these capabilities are not often well defined
and the local decisions made by the distributed agents are
frequently difficult to verify as being aligned with global

manufacturing objectives and constraints. Therefore, there is
a need to develop a manufacturing control architecture that
can explore beyond its predefined capabilities and learn from
gathered information, while still making sure that the overall
manufacturing system objectives and constraints are met.

Note that creating the right balance between centralized
and distributed control is a challenge that is not unique in
manufacturing. For example, network management, recently
transformed by the adoption of software defined network-
ing [10], is benefiting from increased programmability of the
network controllers. However, how to realize the effect of
logically centralized but physically distributed or hierarchical
controllers [11], [12] to ensure scalability and responsiveness
is still being actively explored.

In this paper, we describe a vision for automated learning
in manufacturing systems that would allow the system to go
beyond its predefined capabilities and automatically learn
from new information. As part of this vision, we define
the requirements and objectives for manufacturing systems
to enable automated learning. We also propose an exam-
ple control architecture that can meet the outlined require-
ments and objectives by enabling dynamic decisionmaking in
the manufacturing system. This example automated learning
architecture implements a framework in which a centralized
controller leverages intelligent, autonomous agents to gain
new information from the system and push the limits of the
system’s predefined capabilities. The proposed automated
learning architecture can enable more robust behavior and
improve the flexibility of the manufacturing system, while
maintaining a desirable system performance.

The rest of the paper is organized as follows. Section II
presents a taxonomy to describe dynamic decision making
and learning in manufacturing systems. The requirements
for a general manufacturing system architecture are stated in
Section III. Section IV overviews how some of the relevant
existing literature (i.e., various architectures and frameworks)
meets the manufacturing system architecture requirements.
An example system-level architecture that meets the iden-
tified requirements is described in Section V. Some exam-
ple case studies that will benefit from the proposed control
architecture are provided in Section VI. Section VII lays out
concluding remarks and future directions.

II. TAXONOMY
This section provides a summary of the main concepts and
terminology that are used to develop the requirements and
the structure of the proposed system-level control architec-
ture with enhanced dynamic decision making and automated
learning capabilities.

A. GENERAL TERMINOLOGY
Manufacturing system – a collection of resources,
materials, people, and information arranged and
operated to produce value-added physical products
[13], [14].
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FIGURE 2. A simple, two-level heirarchical example of a manufacturing control architecture that consists of multiple agents, including a
central controller agent.

Manufacturing objectives – parameters that have to
be satisfied by the manufacturing system [15]. System
objectives can vary widely depending on different fac-
tors through the manufacturing ecosystem (e.g., supply
chain or shop floor requirements). The objectives are
usually functions of manufacturing quantity, quality,
and cost [16].
Manufacturing objective metrics – indicators that
are used to measure whether the manufacturing sys-
tem is meeting the manufacturing objectives. Some
objective metrics are expressed as key performance
indicators (KPIs).

B. MANUFACTURING SYSTEM CAPABILITIES
The following terms are used to describe components in a
system-level control architecture that enable a manufacturing
system to meet its manufacturing objective.

Agent – a cyber element that obtains information about
the environment (i.e., sense/measure), makes a deci-
sion based on its own internal objective (i.e., think/
reason/decide), and affects the environment through
its actions (i.e., act) [17]. For manufacturing systems,
agents can be used to make decisions for individual
distributed resources, parts, processes, cells, etc. Note
that an agent can obtain information and affect the envi-
ronment by communicating with the physical system,
other agents, or other cyber elements. This communica-
tion can be accomplished using various communication
protocols, such as [18], [19].

Knowledge base – a repository of information, data,
models, etc. that is used by an agent to store and
organize information. For manufacturing systems, this
information can include the capabilities of the system,
rules for system behavior, and models of the shop floor
equipment [20]–[22]. A knowledge base can belong to
an individual agent or it can be used by multiple agents
to store shared information.
Decision maker – a component of an agent that is
responsible for reasoning and determining how the
agent should act [20]–[22]. The decision making com-
ponent of an agent leverages the knowledge base of the
agent to accomplish this task. Each agent must have an
individual decision maker. Note that conflicts, such as
conflicting requests or learned information from other
agents, in the manufacturing system can be resolved
by the decision maker through cooperation [23], [24]
or by leveraging higher authority agents (e.g., a central
controller) [25].
Agent capability – an action that the agent can
perform. For example, the capabilities of a milling
machine agent might include sending programming
commands, scheduling various operations, and analyz-
ing milling machine data. Capabilities can be set ini-
tially and/or could be learned over time. The collection
of agent capabilities associated with a particular agent
is referred to as an agent capability set.
Capability boundary conditions – the conditions
under which an agent has the ability to perform the
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specified capability. Capability boundary conditions
are often expressed with respect to how, where, when,
and to what extent the capability exists. If an agent’s
decisions lead to an action that does not satisfy the
capability boundary conditions, it cannot or should not
perform any actions associated with that capability.
Capability boundary conditions could be associated
with manufacturing objective metrics, but could also be
associated with other metrics not related to the manu-
facturing objectives, such as safety, security, and regu-
lations (e.g., maximum carbon footprint). An example
of a capability boundary condition would be a mini-
mum temperature for achieving a minimum yield of a
product for a given process, or a maximum temperature
limit for all processes based on safety regulations.
A capability boundary condition could be directly tied
to a particular parameter (e.g., temperature) or associ-
ated with a number of parameters (e.g., a mathematical
objective function or a Boolean combination of param-
eters and functions). The agent’s observations from the
environment could also be used to define boundary
conditions (e.g., can only adjust pressure when tem-
perature is in a certain range). Capability boundary
conditions could be established by the agent to define
its full set of capabilities in the current environment.
These boundary conditions could also be provided by
another agent (e.g., a supervising or controlling agent)
andmay change based on the state of themanufacturing
environment.
Capability authority – a parameter of an agent’s capa-
bility that defines whether the agent has been given per-
mission to perform that capability. If an agent does not
have the authority over a capability, it is not permitted
to perform the actions associated with that capability.
The authority of a capability is usually granted along
with a capability boundary condition tuple representing
limitations to the granted authority. An agent may gain
or lose capability authority over time. The authority can
bemanaged by the agent itself or some governing entity
(e.g., a supervising agent).
Capability boundary conditions tuple – the capabil-
ity and its associated boundary conditions.
Capability boundary conditions set – a set of capa-
bility boundary condition tuples.

C. SYSTEM-LEVEL MANUFACTURING
CONTROL TERMINOLOGY

Cyber-Physical Manufacturing System (CPMS)/
Cyber-Physical Production System (CPPS) – a man-
ufacturing system that contains a collection of physi-
cal, cyber, and cyber-physical agents associated with
a defined set of objectives and a defined capability
boundary conditions set. The system objectives can
vary widely depending on the system and ecosys-
tem environment. Note that the capability boundary
condition set of the system is the superset of the

capability boundary conditions set of the agents in that
system.
Manufacturing control architecture – consists of a
collection of agents and their communication infras-
tructure that acts on the physical environment to
achieve the manufacturing objectives. The agents
(or agent) control the physical components of the man-
ufacturing system to meet a defined set of objectives.
An example architecture for a manufacturing system
that uses the terms defined in this section is shown in
Figure 2.
Centralized Smart Manufacturing System (CSMS)
– a Manufacturing System in which one control-
ling agent, termed ‘‘Central Controller’’ (CC) in this
paper, determines the capability authority of the system
[26]–[28]. This means that the CC either directly or
indirectly dictates or establishes the capability bound-
ary conditions of all the agents in the CSMS (agents
may choose to further restrict boundary conditions).
Oftentimes, the CC sits atop a multi-layer hierarchy of
authority, e.g., an ISA-95 structured system [9].

D. ADAPTATION AND LEARNING TERMINOLOGY
Adaptation capability – the ability of the agent to exe-
cute actions within the capability boundary conditions
set of the agent.
Adaptation capability authority – is the parameter
associated with the adaptation capability of an agent
that defines whether the agent has been given per-
mission to perform adaptation. This capability can be
allowed/restricted by an entity such as a supervising
agent or SME that has the power and capability to
control that authority.
Manufacturing agent adaptation – refers to the
action of an agent that results in changes of an agent’s
behavior within defined bounds of the agent capability
boundary conditions set. The purpose of this action
is to achieve an objective. The adaptation is usually
accomplished through some combination of data col-
lection and analysis such as machine learning, and
actuation such as updating control parameters. It could
also be accomplished as a result of bounded imple-
mented learning (see definition below). The objective
of the adapting agent can be anything and does not
necessarily align with the higher-level objectives of the
manufacturing system.
Learning capability – the ability to acquire knowledge
or skills through experience, study, or by being taught.
Learning is usually accomplished through some com-
bination of data collection and analysis and some input
and assimilation of intelligence, which would necessar-
ily include some elements of Artificial Intelligence or
Natural Intelligence, i.e., subject matter expert (SME)
input. Note that individual agents in a CPMS could
learn from information provided by other agents
(e.g., a central controller updates its knowledge or
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decisions based on information provided by other
agents) or could have the capability of self-learning
(e.g., agent updates its ownmodels and decisions based
on new information from the physical system). Agent
learning may result in knowledge updates for the agent,
lead to new decisions based on these updates, or affect
the behavior of the agent and the system.
Learning capability authority – is the parameter
associated with the learning capability of an agent
that defines whether the agent has been given per-
mission to perform learning. This capability can be
allowed/restricted by an entity such as a supervising
agent or SME that has the power and capability to
control that authority.
Manufacturing agent implemented learning – the
execution of learning that results in changes in the
agent’s knowledge base. This execution may be accom-
plished purely by adaptation (e.g., an agent imple-
menting a new method for setting a parameter within
established bounds based on learning) or by an agent
moving outside established capability boundary condi-
tions (e.g., actuating a set-point outside a bound).
Manufacturing agent bounded implemented learn-
ing – implemented learning in which the implemen-
tation results in the agent staying inside established
bounds dictated by its adaptation capability. An exam-
ple of bounded implemented learning is improved gran-
ularity/fidelity of models of an agent that are used
during adaptation.
Manufacturing agent exploratory implemented
learning – implemented learning in which the imple-
mentation results in 1) the agent moving outside estab-
lished bounds dictated by its adaptation capability
(i.e., boundary violation) or 2) the agent having to
adjust established bounds that results in a boundary set
that is not fully contained in the previous boundary set
(e.g., to ‘‘wider’’ or ‘‘shifted’’ bounds). This is often
termed ‘‘relaxing boundary conditions’’. An agent
often achieves this learning by both (1) relaxing the
limits in the boundary condition set and (2) having
incentives that allow the agent to explore beyond its
existing limits. Relaxing boundary conditions happens
in coordination with a supervising agent or SME.

E. ILLUSTRATION VIA A MANUFACTURING
SYSTEM EXAMPLE
We will use the proposed taxonomy to describe an exam-
ple manufacturing system: the System-level Manufacturing
and Automation Research Testbed (SMART) at the Uni-
versity of Michigan [29]. An overview of the testbed is
shown in Figure 3. SMART has four computer numerical
control (CNC) milling machines, two conveyors, and three
industrial robots with an integrated industrial control system.
Workblocks with RFID (radio-frequency identification) tags
are placed in the system at Cell 3. The workblocks are moved

FIGURE 3. Overview of the System-level Manufacturing and Automation
Research Testbed at the University of Michigan.

to specific CNCs, where a manufacturing process creates a
product feature on this workblock. Once all of the required
features are created, a workblock travels back to Cell 3 to
exit the system. RFID transceivers are located on the convey-
ors to locate and identify workblocks. The conveyor lines,
robots, and CNC machines are able to handle a variety of
parts using pallets, interchangeable grippers, and pneumatic
clamps. SMART is a CPMS that has been used to develop and
test various manufacturing control architectures. For exam-
ple, in [28], SMART is converted into a CSMS with a single
central controller agent to meet system throughput objectives.

SMART has also been used to test a control architecture
similar to the architecture shown in Figure 2 [30]. For the
developed agent-based control architecture, a central con-
troller agent initializes a set of resource and product agent,
where a resource agent controls each manufacturing resource
(e.g., CNC machine, conveyor, robot) and a product agent
controls each workblock. For example, the CNC machine
agent is one of the agents that is initialized by the central
controller. This agent would be represented by one of the
lower-level agents in Figure 2. The CNC machine agent
stores information about the associated CNC machine in
its knowledge base and uses the decision maker to send
high-level commands to the lower-level machine controller
(e.g., high level controller selects a milling program that the
lower-level controller will run). The CNC machine agent
has a number of capabilities, from sending commands to the
lower-level controller to schedulingmilling tasks to analyzing
energy expenditure of the machine. Each of these capabilities
is associated with boundary conditions, e.g., the machine
agent cannot start a machining task if there is an operator
present in the cell (safety), the tasks have a threshold limit
for the amount of energy use (regulation), and the program’s
tool path is within some pre-defined bounds. The lower-
level agents update the central controller with information
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about the shop floor. Then, the central controller can send
commands regarding the capability authority of each agent,
e.g., for a machine agent, the central controller can allow
the mill to move beyond existing energy limits to ensure
that the system throughput meets the system objective. The
different machine agent capabilities and boundary conditions
are stored as tuples in the capability boundary conditions set
in the agent’s dynamic knowledge base.

The machine agent has the adaptation capabilities and
authority to change the manufacturing process by changing
the tool path of the machine. The new tool path must remain
within the pre-defined tool path bounds and must meet the
safety and regulation requirements for manufacturing agent
adaptation. Bounded implemented learning occurs when the
machine agent finds a new tool path that can be used to
complete the required product feature within the boundary
conditions. If a part requires a completely new feature, the
machine agentmight have tomove beyond previously defined
capability bounds and start exploratory implemented learn-
ing. In this scenario, a new tool path that is outside the pre-
defined tool path bounds and energy requirements might be
required to accomplish the desired product feature. If a new
tool path is found, the machine agent communicates with a
higher authority (e.g., a central controller) to request to move
the capability boundary conditions to complete the necessary
manufacturing process.

Note that adaptation and learning are not limited to the
machine agents and can be done by other resource agents and
product agents in the system. However, to enable effective
system adaptation and learning, a framework must be devel-
oped that allows a central controller and the agents to com-
municate and reason about the agents’ capability boundary
condition sets and capability authorities.

III. REQUIREMENTS DEVELOPMENT
Using the taxonomy developed in Section II, we develop a
vision for automated learning in CPMSs, provide the domi-
nant characteristics of CMPSs today, perform a gap analysis
to identify gaps that need to be met to achieve the proposed
vision, and state the CPMS requirements and objectives to
achieve the proposed vision.

A. VISION
As noted in Section I, there is a need to develop a manufac-
turing control architecture that can explore beyond its defined
capability boundaries and learn, while ensuring that the man-
ufacturing system objectives and constraints continue to be
met. Restated using the taxonomy developed in Section II,
this need can be thought of as a vision for CPMSs to support
automated exploratory learning in the manufacturing con-
trol architecture. This learning would be accomplished by
using the capabilities of the agents to enable manufactur-
ing agent implemented learning. This implemented learning
would seek to further optimize or enhance manufacturing
objective metrics, while maintaining a capability author-
ity infrastructure across the system to guarantee that all

manufacturing requirements are also met. The implemen-
tation of this vision requires that CPMSs have a manufac-
turing communication and control architecture that supports
exploratory implemented learning. This architecture would
thus have to (1) provide mechanisms to support adjustments
to capability authorities and associated capability boundary
condition sets across the agent base while (2) maintaining a
capability authority of the entire system that ensures manu-
facturing requirements (including objectives and constraints)
are met.

Realizing this vision places specific requirements on the
design and implementation of the CPMS. The vision is also
associated with objectives that the CPMS must strive to
achieve if the capabilities defined in the vision are to be used
effectively, e.g., as part of a continuous improvement process.
In this section, these requirements and objectives are created
by exploring characteristics of typical CPMSs in operation
today and conducting gap analysis to identify deficiencies
and challenges that prevent the achievement of the vision.

B. CHARACTERISTICS OF A CPMS TODAY
The manufacturing control architectures of today’s CPMSs
vary widely, depending on a variety of factors including the
objectives and requirements of the manufacturing sector and
manufacturing instance, and age and location of the facility.
Most CPMSs/CPPSs today are CSMSs supporting multi-
layer hierarchical control and execution hierarchies with
some level of alignment, at least informally, to the ISA-95
model [9]. Additionally, these systems usually have the fol-
lowing properties, resulting in large part from manufacturing
objectives and requirements:
• Have a central controller (CC) agent that determines the
capability authority of the entire system, per the CSMS
definition [26]. The manufacturing control architecture
might contain distributed agent-based sub-systems dedi-
cated to specific tasks (e.g., maintenance management).
However these sub-systems are not allowed to violate
the capability boundary conditions established by the
CC. The CC could be a fully automated cyber entity or
could also be a hybrid of cyber and non-cyber compo-
nents such as best practices, spreadsheets, and manual
executions.

• Support various levels of manufacturing agent adap-
tation as part of the CSMS delegation process across
the manufacturing control architecture. The adaptation
could consist of fully automated cyber adaptation capa-
bilities (e.g., model-based process control) or be a
hybrid of cyber and non-cyber adaptation capabilities
(e.g., manual product quality sorting based on machine
vision).

• Maintain a capability boundary condition set in the CC
that can only be updated through human (e.g., SME)
involvement. That is, from the perspective of the CC,
exploratory implemented learning can only be achieved
with human involvement. The level of human involve-
ment can vary widely depending on the application
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environment and the type/potential impact of learning.
For example, the SME might be the source of the learn-
ing to be implemented, or the SME might simply be
in the verification and validation (V&V) loop of AI
sourced knowledge updates [31], [32]. Regardless, any
learning that results in a change to the system capa-
bility boundary conditions set requires some level of
human approval. This process evolved naturally in man-
ufacturing where innovation continues to be a largely
human process due to tradition, manufacturing sector
requirements (e.g., pharmaceutical industry [33]), gen-
eral limitations of AI such as lack of Artificial General
Intelligence AGI) capabilities [34], [35], and lack of
trust or ability to automatically verify or quantify AI
learning prior to implementation. Note that in some sys-
tems, agents below the CC might be given the capability
authority to conduct exploratory implemented learning
as long as the outer capability bounds of the CSMS
are not violated. An example here would be permission
given to a CNC milling agent to go into a learning mode
at the agent’s discretion to learn a new path for a part.

• Are increasingly becoming an integral part of a manu-
facturing ecosystem from raw materials to the customer
experience [36], [37], but continue to maintain CSMS
capability boundary conditions set within the defined
CSMS. Note that the defined CSMS could be the ‘‘four-
walls’’ of the manufacturing facility, but could also be
an entire integrated manufacturing ecosystem including
the entire supply chain and the customer.

C. GAP ANALYSIS
From the perspective of achieving the vision of supporting
automated exploratory learning, these are gaps in capabilities
of current CPMS systems, as well as issues with AI tech-
niques and human practices.
The gaps in current CPMS systems arise largely from a lack

of emphasis on quantification and automation of the learning
processes. These gaps include:
• The procedures for on-line implementation of learning
can vary widely and are largely ad hoc. There have been
significant strides as part of the smart manufacturing
evolution to provide a lifecycle approach for learning
development, V&V, deployment and assessment, e.g.,
as part of the digital twin (DT) implementation pro-
cess [31]. However, issues such as diversity in learning
topics and SMEs often make it difficult to realize con-
sistent detailed procedures.

• The connection or linking of boundary conditions to
manufacturing requirements is oftentimes not well-
documented or well-understood quantitatively or even
qualitatively. For example, many boundary conditions
result from supplier documentation (e.g., maintenance
practices for a machine), regulations, or simply tradi-
tion. Also, boundary conditions are often considered
in isolation (e.g., maximum temperature and maximum
pressure) and not part of a more complexmultivariate set

of condition relationships that are more representative of
the application environment.

• There is little formal categorization or quantification of
learning from a risk vs. reward perspective. Exploratory
learning processes can be associated with widely differ-
ent risks and rewards (e.g., expanding a control bound-
ary condition versus a safety boundary condition).While
these risks and rewards are often quantified and gen-
erally categorized for re-use (e.g., cost-benefit analysis
procedures for adjusting a maintenance schedule), the
mechanisms vary widely across CPMSs.

• There is no formalized process, structure or language
for capturing and transferring learning between agents
in a CPMS, especially between agents and the CC in a
CSMS. As noted earlier, bringing the data together in
a CPMS as part of the smart manufacturing evolution
provides huge opportunities for learning. However the
process for a CC to learn as a result of agent actions and
communication of learning is largely non-existent or ad
hoc and requires a human in the loop.

• Intelligent agents in a CPMS are oftentimes not given the
freedom that would allow the system to take advantage
of this intelligence. As an example, smart manufacturing
systems today oftentimes have highly intelligent edge
devices as part of an IIoT infrastructure; this intelli-
gence can result from highly directed AI associated
with the edge device application area or access to more
detailed information closer to the application environ-
ment. CPMSs frequently do not provide the necessary
flexibility to allow these ‘‘smart’’ devices to conduct
exploratory learning or, as noted above, there generally
is not a process for the CC to learn from these agents
so as to support a more fruitful CSMS-wide exploratory
learning environment.

• The available methods to ensure system security, espe-
cially data and intellectual property (IP) security are
insufficient to maintain security levels in the envisioned
CPMS. Data and IP security has been highlighted as the
most important security issue in some manufacturing
domains [38]. The distribution of information required
to support many of the tenets of smart manufacturing
is often gated by concerns over IP. This problem will
be exacerbated by the need to communicate and share
learnings as part of the CPMS vision.

• There is a lack of sufficient integration in the ecosys-
tem and associated traceability (e.g., digital thread
[39], [40] and blockchain [41], [42]) to support the
CPMS vision in areas where supply chain information
is a component of implemented learning. Examples
include (1) (upstream) learning supplier patterns and
implementing associated learning to improve through-
put, and (2) (downstream) learning customer buying pat-
terns and optimizing production to customer delivery
requirements.

• Existing CPMS hardware and software may not be
able to easily and effectively integrate new learning
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approaches. The hardware and software found in
existing CPMS were mainly developed to ensure system
reliability and may need to be updated to incorporate
the computation and reasoning required for enhanced
dynamic decision making and learning.

• There is no standard communication mechanism to sup-
port interoperability, interchangeability, extensibility,
reusability, and other ‘‘ilities’’ associated with imple-
mented learning sharing and distribution. This
communication solution could be an extension of an
existing factory wide data communication solution such
an ISA-95 solution provided by the Asset Administra-
tion Shell (AAS) [43] or built on existing protocols such
as OPC-UA [44]. However enhancements would still
be needed to support the requirements of implemented
learning communication.

Gaps in AI techniques as they apply to achieving the
CPMS vision result largely from the relative infancy of AI
application in manufacturing. These include:
• AI learning is usually not accompanied by an under-
standing of the quality of or confidence in the learnings.
As with any learning process, there is a possibility of
error. More formalized techniques are needed to convey
AI learning and associated quality or confidence such
as those associated with DT predictions in a DT frame-
work [31]. Quantification could include believability,
range of impact, and thresholds on impact such as max-
imum negative impact on a metric.

• AI techniques in manufacturing are primarily narrow
AI applications. Thus the impact of exploratory imple-
mented learning in areas outside of the domain of the AI
knowledge base are unknown to the AI system. Narrow
AI techniques will need to be formally combined with
techniques towards AGI or human intelligence before
implemented learning can be trusted [35].

• The use of narrow AI technique also creates a learning
gap in that learnings are confined to a limited under-
standing of aspects of the application environment. This
prevents the creative type of learning associated with
AGI or the SME often termed ‘‘thinking outside of the
box’’ [32].

• There is no formalized process for AI-SME interac-
tion in exploratory implemented learning. Ideally the
learning process is a continuum that evolves over time
from primarily SME learning to AI assisted learn-
ing to AGI and SME learning. Realizing this con-
tinuum requires developing a formalized methodology
to guide AI-SME interaction throughout the learning
process [32], [37].

• AI techniques have been successfully used in specific
applications, such as process monitoring, optimization,
etc. However, their utilization is limited at the sys-
tem level of decision making due to the difficulties of
data synthesis. The heterogeneous manufacturing data
may contain a high degree of irrelevant, redundant, and
missing information, which influences the performance

and suitability of AI algorithms relative to expected
results [45].

Gaps in human practices relate largely to culture,
including:

• From the manufacturer SME perspective there is often-
times a general resistance to support AI techniques when
they are considered as a replacement for SMEs rather
than a tool for enhancing SME capabilities. Recent
efforts in this space directed at educating, training, and
connecting the manufacturing workforce are meant to
address this challenge [46].

• From the AI developer perspective there is oftentimes a
belief that data driven solutions will solve problems and
SME expertise is not necessary. Recent efforts in this
space have begun to address this challenge by illustrat-
ing the importance of combining SME and AI knowl-
edge with an objective of ‘‘no knowledge left behind’’
in smart manufacturing [32], [37].

D. REQUIREMENTS AND OBJECTIVES
With an understanding of the CPMS vision, current practices
and gaps, CPMS requirements and objectives can be formu-
lated that are necessary to achieve the vision. Leveraging
existing works that have defined requirements and objectives
for general industrial AI applications [47]–[49], security [50],
and distributed CPMS [51], [52], we define the primary
requirements and sub-requirements for future CPMS:

R1 Exploratory learning must be quantifiable in terms
of learning parameters that necessarily include assess-
ment of benefit, risk, quality of (or confidence in)
learning, and impact on capabilities, capability bound-
ary conditions, and capability authorities. This neces-
sarily places similar requirements on the intelligence
mechanism used in developing the learning. The rela-
tionship between learning, learning parameters, and
capability boundary conditions must be quantifiable.
This includes any interrelationships between boundary
conditions related to the learning.

R2 A framework must be in place to support the distributed
implementation of learning throughout the system.

a) The framework must include a mechanism to sup-
port the communication of learning among agents
within a particular level and between levels in a
system.

b) The framework must include a mechanism to
support the implementation of learning among
agents including any adjustments to learning
parameters.Thismechanism necessarily includes
methods for agents to specify, communicate and
change capabilities, capability boundary condi-
tions, and capability authority in the CPMS.

c) The framework must extend across the entire
ecosystem as defined by the CPMS implementa-
tion which would likely include elements of the
upstream and downstream supply chain.
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d) The framework must provide a level of
re-usability, interoperability (e.g., an abstraction
layer or a communication protocol to support
different agents, agent types, or agents classes
[53], [54]), interchangeability, maintainability,
and extensibility to ensure overall benefit.

R3 An evolutionary process must be in place to support
implementing learning resulting from a continuum of
human and AI knowledge.
a) The process must support existing learning mech-

anisms. This could include isolation of bound-
aries within a boundary set for adjustment, serial
assessment of impact on critical aspects such as
safety, learning from the SME (see below), and
visualization and explanation of learning for SME
empowering.

b) The process must support the evolution of the
implemented learning mechanisms (as abilities
of and confidence in AI systems evolve). This
includes the incorporation of AGI with AI, and
SME empowering and evolving role definition.

c) A re-usable learning development and implemen-
tation lifecycle must be developed as part of the
process. The lifecycle must include verification
and validation of learning prior to deployment,
assessment of learning implementation, and feed-
back to the learning. Specifically for bounded
implemented learning, it is important to develop
verification and validation algorithms to ensure
that the system behaves in a desired manner.

d) The process must account for traceability of the
learning in terms of contributors, contributions
and knowledge base evolution.

e) The process must consider and address con-
flict resolution in the system. Agent-to-agent
(e.g., [23], [24]) and non-agent-to-agent
(e.g., human-to-agent [55], [56]) conflict resolu-
tion must be developed as part of the process.

The CPMS objectives related to the vision are:
O1 Maximize use of existing processes to enable automated

exploratory implemented learning
a) Enable extension of the adaptation paradigm to

support adjustments based on learning for spe-
cific bounds to which confidence in learning can
be applied and/or possibility of mistakes can be
accepted.

b) Use off-line and manual processes in existence
for implemented learning as input to develop-
ing automated on-line learning implementation
processes. This could include existing life-cycle
processes.

O2 Provide incentives for CPMSs and their agents to learn
in a manner that is most beneficial to the CPMS.
a) Provide quantifiable incentives to improve man-

ufacturing objective metrics and expand/relax

capability boundary conditions performance
objectives, while establishing appropriate penal-
ties for mistakes as well as missed opportunities
for learning.

b) Provide incentives to explore outside of the
ecosystem boundaries, e.g., to achieve exploratory
implemented learning that incorporates supply
chain information or learning communication.

c) Provide incentives to enhance the re-usability,
interoperability, interchangeability, maintain-
ability, and extensibility of the distributed
implemented learning framework as part of a
continuous improvement process.

O3 Provide mechanisms that support human and AI inter-
action in the learning process with an objective of ‘‘no
knowledge left behind.’’
a) Provide methods for structured interaction

between AI systems and SME networks. Clearly
define AI and SME complementary roles
(e.g., innovating and approving) and boundaries.
Define role evolution paths and conditions for
evolution.

b) Support and incentivize the empowering and
enabling of the SME as a collaborator in CPMS
and its evolution (growth), rather than the elimi-
nation of the SME. This includes the SME learn-
ing from the AI.

c) Support the empowering and enabling of the AI
system and its evolution. This includes incentiviz-
ing the AI system to learn from the SME and the
SME to aid in the teaching of the AI system.

O4 Ensure that appropriate levels of security, especially
data and IP security, are maintained during imple-
mented learning.Achieving this goal will likely require
a combination of applying existing and emerging capa-
bilities such as homomorphic encryption and federated
learning [57], [58].

IV. MAPPING EXISTING WORKS TO REQUIREMENTS
AND OBJECTIVES
As described in Section I, there is a need to develop a con-
trol architecture that improves system-level dynamic decision
making and learning. To achieve this objective, the control
architecture must meet the requirements and objectives iden-
tified in Section III. A number of existing works have defined
and addressed some of these requirements and objectives.
Table 1 provides a summary of different works in the man-
ufacturing domain, including centralized control approaches,
distributed control approaches, hybrid (centralized and dis-
tributed) control approaches, and reference architectures. The
rest of this section provides more details about the works
identified in Table 1.

A. CENTRALIZED CONTROL APPROACHES
A common approach for control of manufacturing systems is
centralized control. For this approach, a central controller has
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TABLE 1. Summary of requirements (R) and objectives (O) addressed in literature.

the necessary models, data streams, and control logic to make
decisions about the production system. The controller obtains
run-time data through the sensors on the plant floor [26], [59].
The data is processed by the controller to run optimization
procedures (e.g., production planning, maintenance schedul-
ing), make rule-based decisions (e.g., system reconfiguration,
fault detection), or to monitor process KPIs (e.g., system
throughput, yield, quality). Due to its centralized structure
and access to all components on the plant floor, central
controllers can optimize global objectives and implement
changes across the entire system. As a result, centralized
architectures are often capable of fulfilling R1 since they have
a clear understanding of the global view of the CPMS, which
theymay utilize to define capability boundary conditions. It is
important to note that such system-level exploratory learning
applications are not extensively studied in the literature due
to the issues in computational complexity and scalability.

As manufacturing systems get more complex and
autonomous, the learning problem becomes increasingly
challenging. Hierarchical architectures to enable scalability
and modularity are utilized for this purpose (e.g., ISA-95).
The main drawback of centralized architectures is the lack
of distributed learning capabilities (i.e., requirements related
to R3), which limits the applicability of exploratory learning
applications in practice. A digital-twin based exploratory

scenario for a manufacturing cell is given in [85]. A cen-
tralized scheduler is trained using DTs of the CPMS
(satisfying R1). While R2 is not explicitly addressed, the
offline training of multiple agents is proposed as a solution
for distributed learning. Centralized approaches also result
in heavy burden on network bandwidths due to the large
amounts of data collected frequently that has to be transmitted
to the central controller as well as latency and poor response
time.

B. DISTRIBUTED CONTROL APPROACHES
Another approach for the control of manufacturing systems is
distributed control. For most distributed control approaches
for manufacturing systems, a number of software agents
make high-level decisions for various manufacturing system
components (e.g., machines, physical parts, product orders,
etc.) [5], [8], [65]–[67]. These decisions determine the per-
formance of the entire manufacturing system [64]. The agents
make decisions to take actions based on their own internal
objectives and information about the environment [21], [24].

The focus of most existing works is to construct the
overall multi-agent architectures to achieve desired man-
ufacturing objectives. PROSA [60] and PABADIS [61]
provide a general description of agent knowledge, commu-
nication, and decision-making behaviors in their multi-agent
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architectures. ADMARMS develops the requirements and
qualitative design principles for the knowledge, functionality,
and communication capabilities of its agents [53]. ADACOR
provides a formal specification to describe the behavior of its
proposed agents using Petri nets [62], [63]. In [21], [70], the
internal architectures that enable agent communication and
decision-making of two types ofmanufacturing agents - prod-
uct agent and resource agent - are developed. However, these
architectures do not provide well-defined agent capabilities,
and thus cannot support quantifiable implemented learning or
the communication of these learnings (R1 and R2).

A few existing works have provided definitions for agent
capability, but these definitions are specific to the capabil-
ities of manufacturing resources. In [71], [73], agent capa-
bilities of manufacturing resources are broken down into
atomic (simple) and complex (combined) capabilities. These
capabilities are described in a semantic manner with several
parameters acting as boundary conditions. In [74], agent
capabilities are defined by a set of specifications in the
form of preconditions and postconditions using proposi-
tional logic. A capability can only be executed when its
preconditions are true, and the postconditions will hold if
the capability ends with success. However, the capability
descriptions, combination rules, and condition-based logic of
these works are predefined and do not change dynamically.
In [22], [24], [72], a finite state machine (FSM) is used to
represent the capabilities of each manufacturing resource,
which enables agents to update their capabilities dynamically
as they receive information from resources in their local
manufacturing environment. While introducing quantifiable
and dynamic characteristics to agent capabilities, this method
only passes information from the physical layer to the agent
layer without offering learning mechanisms (R2).

For the learning capability in multi-agent systems,
[68] and [69] mentioned explorative knowledge augmenta-
tion on a conceptual level. Most existing works apply rein-
forcement learning to a specific problem (e.g., production
scheduling) with specified learning parameters [76]–[78].
However, these works do not contain formal agent capabili-
ties and associated boundary conditions and do not support an
evolutionary learning process with dynamic decision-making
(R2 and R4). Therefore, in the current multi-agent architec-
tures, the agent capabilities and quantifiable learning param-
eters are not connected, which limits the ability to support
implementing learning behaviors.

C. HYBRID (CENTRALIZED AND DISTRIBUTED)
CONTROL APPROACHES
For industrial systems, [79] classifies hybrid (combined
centralized and distributed) control architectures into three
classes: class I contains typical centralized, hierarchical con-
trol, class III contains distributed, heterarchical control, and
class II introduces a concept of a hybrid control architecture to
bring the advantages of class I and class III together. ORCA-
FMS [80] work further classifies class II into four sub-classes
based on two criteria: whether the structure can evolve over

time (static or dynamic) and whether the control is applied
to all entities or not (homogeneous or heterogeneous). Based
on this classification, ORCA is a dynamic and heterogeneous
architecture in class II. It has both a global controller and
many local controllers. The global controller has the state
information of the whole system while the local controller
only has the local view. It also has two operating modes:
normal mode and disruptive mode. In normal mode, the
global controller optimizes the global performance and gives
orders to the local controller, which will execute these orders.
When the local controller detects a perturbation, it switches
to disruptive mode and handles the perturbation locally. Our
work generalizes such classification by using the definitions
in section II (e.g. agent, agent capability, agent adaptation) to
describe a class II manufacturing system.

D. REFERENCE ARCHITECTURES
In addition to the various control approaches, a number of
reference architectures have also been developed that define
some of the requirements and objectives. ISA-95 is a well-
known standard that defines a data model for the integra-
tion of enterprise and control systems in manufacturing [9].
Given the established framework of ISA-95, efforts have
been focused on infrastructure requirements for enhancing
the ISA-95 with the Industrial Internet of Things (IIoT).
In Germany, RAMI 4.0 [81] has been proposed as an archi-
tecture for the communication between the different system
components across the value chain and introduced the idea
of asset administration shell acting as a single point of infor-
mation retrieval. In the US, the Industrial Internet Reference
Architecture (IIRA) [82] has been introduced to create a
common set of architecture requirements, characteristics, and
patterns within and across industries for higher interoperabil-
ity and enhanced development of Industrial Internet systems.
Outside of Germany and the US, other initiatives have been
introduced in Japan, China, Korea, and the UK. The Japanese
Industrial Value Chain Initiative introduced the Industrial
Value Chain Reference Architecture (IVRA) [83]. China has
defined its own Intelligent Manufacturing System Architec-
ture (IMSA) composed of three essential elements, namely,
lifecycle, system hierarchy, and intelligent functions [84].
The UK has been focusing more on smart services instead
of technology within Industry 4.0 [86].

Although the above mentioned reference architectures pro-
vide concepts and methods for developing concrete architec-
tures, they are not specific architectures for concrete systems.
The concepts and methods have to be applied to realize
concrete system architectures and extensions of these refer-
ence architectures need to be addressed to realize practical
solutions. However, systems developed using these reference
architectures will still meet some of the requirement and
objectives identified in Section III. Specifically, [81]–[84]
state the need for quantifiable learnings and learning param-
eters (R1). These architectures also provide some methods to
support human–AI interaction (O3) and to ensure the security
of manufacturing systems (O4).
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V. EXAMPLE ARCHITECTURE TO SUPPORT
AUTOMATED LEARNING
None of the existing system-level control architectures for
manufacturing systems addresses all of the requirements or
meets the objectives identified in Section III. Therefore, there
is a need to develop an effective automated learning con-
trol architecture for manufacturing systems. In this section,
we provide a high-level overview of a control architecture that
could be extended to meet the requirements and objectives
from Section III. A visualization of this example architecture
is shown in Figure 2.

A. ARCHITECTURE COMPONENTS
The proposed control architecture utilizes a number of agents
to gather information, make decisions, and send commands
to the equipment on the shop floor. To achieve this objective,
each agent stores its capability boundary conditions set that
consists of capability boundary conditions tuples in its knowl-
edge base. Formally, the capability boundary conditions set,
Capabilities can be represented as:

Capabilities = {(capability1, conditions1),

(capability2, conditions2), . . .} (1)

where capabilityi is a capability of the agent and conditionsi
is the associated boundary conditions. Note that the capability
boundary conditions set includes the adaptation and learning
capabilities of the agent.

Each agent also contains amapping that represents whether
the permission to perform that capability has been provided:

Authority : Capabilities→ {true, false} (2)

The capability boundary conditions set and the capabil-
ity authority are dynamic properties of the agent and will
often be altered by other agents in the system, as described
in Section V-B.
In addition to the boundary conditions set, an agent stores

other information in its knowledge base (e.g., production
schedule, dynamic model, etc.). Various other works have
explored the information that each agent needs to store to
make effective decisions [20], [30], [72]. All of this infor-
mation is used by agents to decide what commands need to
be sent to various resources on the shop floor.

B. STRUCTURE AND COMMUNICATION
To meet the requirements and objectives, we will leverage
a CSMS-based approach to the development of the archi-
tecture. The proposed architecture contains a central con-
troller (CC) agent that receives updates from the agents in
the system, collects data from the shop floor, and receives
updates from the manufacturing agents. However, in con-
trast to existing CSMS, the CC can set parameters for the
adaptation capability and the learning capability to enable
adaptation, bounded implemented learning, and exploratory
implemented learning within the central controller as well as
among the agents under its control.

To enable adaptation and learning, the CC gives agents
the authority to perform adaptation and learning. In addition,
the CC can set the boundary conditions for these capabili-
ties. For example, the CC can enable adaptation, bounded
implemented learning, and exploratory implemented learning
only for specific agent capabilities. If exploratory imple-
mented learning authority is enabled for a capability, the
agent is allowed to relax existing boundary conditions and
send commands to the shop floor that violate these conditions
(e.g., [23]). In addition, the agent frequently updates the CC
with any information that it obtains from the data gathered
from the floor. The CC keeps track of this information and
monitors the system to ensure that any global manufacturing
objectives are satisfied.

C. MEETING REQUIREMENTS AND OBJECTIVES
The proposed architecture can be extended to meet the
requirements and objectives identified in Section III. To meet
requirement R1, individual agents need to ensure that
exploratory learnings are quantifiable. The CC should also
ensure that it provides exploratory learning authority to capa-
bilities that can be quantifiable. While the proposed frame-
work provides the means to ensure an the integration of
distributed learning (requirement R2), it is still necessary to
develop the algorithms required to ensure that learnings are
effectively communicated in the system and across the supply
chain. To ensure that requirement R3 is met, the implemented
learning algorithms used by the individual agents must be
able to support existing learning methods and ensure the re-
usability of these methods. Further there must be a system in
place for human and AI interaction to maintain the capabili-
ties and authority and promote their evolution.

The proposed control architecture can be used to ensure
that the CPMS objectives are satisfied. For objective O1,
the proposed architecture can be leveraged to ensure existing
adaptation paradigms can be extended to create exploratory
learning. The CC can provide the agents with initial authority
for adaptation and then start to slowly extend the boundary
condition for agent learning. Also capabilities can be parti-
tioned into on-line critical-path versus off-line operation so
that exploratory learning could be accomplished at lower risk
and cost. As part of the communication between the CC and
the agents, the CC can provide incentives to the agents to
allow for enhanced exploratory implemented learning to sat-
isfy Objective O2. Similar, for Objective O3, there is a need
to implement and develop SME-agent interfaces and inter-
actions to ensure that there is ‘‘no knowledge left behind’’
(e.g., [55]). Finally, security protocols need to be added to
the proposed architecture to ensure cybersecurity and meet
Objective O4. One possible approach to enhance cyberse-
curity is through the extension of existing communication
standards and the development of a security practices that
ensure the communication between the various agents meets
existing requirements. This would be complemented with a
framework to support and encourage secure information and
knowledge sharing.
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FIGURE 4. The setting of the AM Fleet scenario. The arrows between the agents show the communication links
while the arrows on the AM Fleet show the physical connections for material flow in the system.

VI. DYNAMIC RECONFIGURATION EXAMPLE
As part of the vision toward automated learning manufac-
turing systems, we provide a simple example illustrating the
automated learning architecture for the additive manufac-
turing (AM) fleet shown in Figure 4. An AM fleet utilizes
multiple AM resources in parallel for high throughput and
flexibility [87]. The example AM fleet consists of machines
that (1) produce the products, (2) perform post-processing
(e.g., support structure removal, part cleaning, material treat-
ment processes, finishing processes, or quality control mea-
surements), and (3) transport the printed parts between other
machines. While there may be a number of other machines
in industrial AM fleets (e.g., raw material feed to the AM
resources, assembly and packaging resources), we limit the
conceptual AM fleet to the resources given in Figure 4 for
the purpose of presentation.

We have three Fused Deposition Modeling (FDM)
machines in the fleet, each producing dedicated products P1,
P2, P3, respectively. In the nominal case, we assume that
each machine is capable of producing all types of parts, but
does not have the authority for reconfiguration. This nominal
case describes the situation when each machine produces the
corresponding product based on an average demand forecast.
Therefore, for this case, each machine has a preset production
schedule. The physical layout of the conceptual AM fleet
is shown on the right hand side of Figure 4. The fleet has
two mobile manipulators (T1, T2) responsible for material
transportation between the FDM machines and the post pro-
cessing stations, with the physical interconnections shown by
the dashed arrow in Figure 4. The cyber-physical interconnec-
tions and data exchange are also shown in Figure 4. A fleet
controller (e.g., the controller described in [26]) is in charge
of production management in the system. The production
schedules are provided to individual agents, which control the

associated process in each machine. Agents use sensor data
to control the physical resources and learn new information.
Learned information is shared with the fleet controller for fur-
ther analysis and learning. The fleet controller shares system
information for production boundary conditions, authorities,
etc., with the agents, and the agents use their belief models
and controllers to send actuator commands on the physical
system.

In this conceptual case study, we consider three cases with
increasing dynamic decision making, flexibility, and learning
capabilities. The three cases of interest presented in Figure 5,
are as follows.
• CASE-1: No Learning. In this scenario, the agents in
the system have no learning capability or implemented
learning authority. Thus, the agents rely on their given
models, capabilities, and authorities for production.

• CASE-2: Bounded Implemented Learning. The agents
in this scenario have the capability to learn from the
previous iterations and past process data. The learning
is confined to the capability boundaries set by the fleet
controller. Therefore an agent can only learn to improve
within the predefined boundaries, satisfying the given
constraints defined by the fleet controller. This type of
learning is common in modern manufacturing systems
with learning-based controllers.

• CASE-3: Exploratory Implemented Learning. This cor-
responds to the proposed learning-based adaptation and
dynamic reconfiguration scenario. By utilizing the pro-
posed exploratory implemented learning methods from
this work, the agents are able to learn beyond their
capability boundary conditions. The learned actions by
the agents are shared with the fleet controller for fur-
ther analysis and verification. The fleet controller can
choose to allow the agents to implement new control
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FIGURE 5. The three cases discussed in the case study.

actions accordingly, or overrule the proposed actions of
the agents and instead change their capability boundary
conditions to ensure desired system performance and
constraint satisfaction. We assume that the FDM agents
have the capability to communicate with each other in
this scenario.

In all cases, we consider an unexpected large order of
P1, which is the product produced only by FDM1 in the
nominal case. This represents an unexpected disturbance in
the production system, and the responses of the AM fleet
in the three cases are studied to compare their capability
adapting to this unexpected disturbance. The decisionmaking
steps taken in each case are illustrated by the vertical flow
charts in each corresponding case in Figure 5. In CASE-1, the
agents in the system have no learning capability. Therefore,
the FDM1 Agent commands the FDM1 machine to produce
all the incoming orders. Since all orders are produced by a
single machine, this leads to a suboptimal schedule where the
order of the incoming products take a long time (compared to
an optimized schedule using multiple machines), and FDM1
becomes a bottleneck.

CASE-2 represents resources with limited learning capa-
bility. Agents in the system are able to utilize data from the
physical system to learn better control actions and policies
within the capability boundaries defined by the fleet con-
troller. In this case, the agent of FDM1 learns to improve the
process performance by reducing the cycle time. The agent
utilizes a data-driven optimization or online learning method

to improve process performance while adhering to the con-
straints set by the fleet controller in terms of e.g., maximum
process speed, allowable printing temperature, maximum
layer height, and expected part performance as a function of
the printing parameters. Under these constraints, the FDM1
Agent employs learning, which now results in another sub-
optimal schedule (compared to an optimized schedule using
multiple machines), but one that is an improvement over the
schedule of CASE-1.

CASE-3 describes the proposed learning-based control
scenario decision flow chart. Given the same unexpectedly
large order, the FDM agents now communicate with each
other to commission the incoming production. This results
in a balanced learned suboptimal schedule that is optimized
at the level of the FDMmachines. The schedule is suboptimal
because it does not consider the implications of this new
schedule on the downstream resources (transportation and
post processing). Note that this learned schedule is outside
of the initial capability boundary of the FDM agents and
it is a product of learning between the agents. The FDM
agents send a request to the fleet controller to implement the
learned suboptimal schedule. Since the fleet controller has
a centralized view of the fleet, it identifies that the learned
suboptimal schedule leads to bottlenecks on the downstream
since the product P1 can only be post-processed by the PP1
station. Therefore, the fleet controller does not allow the
agents to implement the given schedule, but instead uses
the learned information and an understanding of the entire
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system to determine how to best use the resources to improve
production. In this case it modifies the capability authority of
the FDM agents to give them the authority to communicate
with the downstream transport and post process agents to
learn a new schedule. After this authorization, all agents
communicate to learn an optimal schedule that optimizes the
system-wide cycle time and productivity, which is the best
learned optimal schedule in this example.

Note that the criteria for whether an agent should or
should not use learning, bounded implemented learning,
or exploratory implemented learning will be system and situ-
ationally dependent. For example, a manufacturer might have
to specify that if the agent is doing exploratory implemented
learning, it has to be done offline or be verified by another
agent or person. However, in general, if exploratory imple-
mented learning is supported, then bounded implemented
learning should be supported. Similarly, if bounded imple-
mented learning is not supported, then no learning should
be allowed. Future work will look at setting explicit criteria
for choosing the different types of learning approaches and
extending this approach to automated learning for other appli-
cations and case studies.

VII. CONCLUSION AND FUTURE WORK
A key to success in advanced manufacturing is the ability
of accommodating new capabilities and pushing the bound-
aries of adaptability and flexibility. The explosion of AI
capabilities over the past decade has created an environment
where existing manufacturing infrastructure paradigms, often
in place for decades, are not sufficient to the task of accom-
modating these new capabilities. Specifically, while these
existing manufacturing paradigms can often be enhanced to
support increased levels of adaptability and flexibility, they
rarely can accommodate capabilities where the system actu-
ally learns and moves beyond established boundary condi-
tions without direct human intervention.

In this paper a system-level architecture has been pro-
posed from a requirements perspective that allows factories to
extend adaptability into the domain of implemented learning
and especially exploratory implemented learning. A taxon-
omy for implemented learning in CPMSs is presented that
allows us to delineate and quantify the capabilities and limi-
tations of agents in a coordinated system; these capabilities
are defined with respect to pre-defined or initial capabili-
ties, and capabilities that arise from the ability to adapt or
learn. Using this taxonomy a vision for CPMSs is defined to
support automated exploratory learning. An audit of existing
CMPMs and AI systems reveals many technology gaps that
must be addressed to realize this vision including procedures
for implementing learning, lack of a quantification of learn-
ing and a formal process for transferring learnings between
agents, and lack of sufficient guarantees that learning will
provide a net benefit without negatively impacting system
security and safety. A set of requirements are then developed
to achieve the CPMS vision by addressing the defined tech-
nology gaps. Key requirements include the quantification of

learning, the ability to communicate and make use of learning
between agents, and the ability to support the transition along
the continuum from pure human implemented learning to
AI assisted and AI implemented learning. The vision is also
associated with a number of operational objectives includ-
ing leveraging existing processes, incentivizing and enabling
learning through human-AI interaction and goals such as ‘‘no
knowledge left behind,’’ and maintaining a secure environ-
ment throughout the learning process.

Using this requirement set, a hybrid control architecture is
proposed that enables dynamic decision making and imple-
mented learning in a CPMS. The architecture addresses the
derived requirements as it includes a mechanism for com-
municating quantified capabilities and capability authorities.
An additive manufacturing fleet example illustrates the use
of the architecture in scenarios where there is no learn-
ing, bounded implemented learning, and exploratory imple-
mented learning. Future workwill focus on using a real-world
manufacturing testbed or system to validate the automated
learning concept and control architecture. Moving forward,
even if the vision of a framework for automated exploratory
learning in CPMSs is fully achieved, the learnings will only
be implemented if there is trust in these learnings. This
includes convincing the human element invested in the pro-
cess that the learning will provide a net improvement towards
manufacturing objectives and will not negatively impact met-
rics such as safety and security.

Quantification in the learning process (benefit, confi-
dence, et.) as outlined in this paper is an important initial step
in providing this trust, however quantification of uncertainty
in AI system learning remains as a challenge [88]. One way
in which the quantification and trust can be improved is to
strive to align the AI learning with the corresponding human
learning process. As an example, AI learning is often broken
down into identification/perception and reasoning tasks with
different techniques (such as neural net and symbolic AI
respectively) applied to these categories [89]. The quantifi-
cation of learning in each of these domains, the interaction
between the two domains, and the proactive interaction with
human learning as part of the business process will require
further exploration [32]. As another example the design and
standardization of the human-AI interface to support an inter-
active learning process will enhance the interoperability and
interchangeability of human and AI elements in the learning
process. This interface must be proactive in its engagement
of these resources seeking intelligence input rather than just
accommodating it. Trust and the human-AI connection rep-
resents just one of the key technical challenges in moving
towards automated learning in CPMSs. The narrowness of
AI and a lack of understanding of its boundaries of nar-
rowness lead to additional issues of applicability and trust;
understanding and better specifying AI solution boundaries,
widening of AI, and moving towards general AI will all
work towards addressing this challenge [34]. V&V of AI
evolving systems and AI sourced knowledge updates (as dis-
cussed in Section III) will be particularly challenging as these
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V&V systems in many cases must also ‘‘learn.’’ The main-
tenance of the growing and evolving knowledge base will
present a number of challenges. Security and information
partitioning in learning environments will present challenges
that are already being observed today in supply chain con-
nectivity in the manufacturing ecosystem and other informa-
tion and knowledge sharing environments such as the cloud.
Additionally, while some learnings are absolute, others may
be temporal or contextually dependent. The dynamics and
context richness typical in CPMSs thus represent additional
challenges in knowledge management.

As a final point, a key challenge in moving towards
automated learnings in CPMSs might be termed the human
exploitation challenge. There must be constant attention to
respect the human element in systems. This respect can take
many forms including ensuring fairness in learning and learn-
ings sharing, ensuring lack of bias to factors that do not relate
to CPMS objectives, and avoiding exploitation of the human
element in anyway. Regardless of these human-AI interaction
challenges, the importance of ‘‘no human left behind’’ can
not be understated. Learning at the highest level will always
be human guided, with delegation of learning capabilities
at lower levels increasingly delegated to AI or AI guided
systems. This process of moving through the human to AI
continuum towards factories that learn automatically requires
strong cooperation from both sides and a corresponding com-
mitment to the value that each side will provide to the ultimate
solution.
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