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ABSTRACT
Motivated by the rapid deployment of 5G, we carry out an in-
depth measurement study of the performance, power consump-
tion, and application quality-of-experience (QoE) of commercial
5G networks in the wild. We examine different 5G carriers, deploy-
ment schemes (Non-Standalone, NSA vs. Standalone, SA), radio
bands (mmWave and sub 6-GHz), protocol configurations (e.g., Ra-
dio Resource Control state transitions), mobility patterns (station-
ary, walking, driving), client devices (i.e., User Equipment), and
upper-layer applications (file download, video streaming, and web
browsing). Our findings reveal key characteristics of commercial
5G in terms of throughput, latency, handover behaviors, radio state
transitions, and radio power consumption under the above diverse
scenarios, with detailed comparisons to 4G/LTE networks. Fur-
thermore, our study provides key insights into how upper-layer
applications should best utilize 5G by balancing the critical tradeoff
between performance and energy consumption, as well as by tak-
ing into account the availability of both network and computation
resources. We have released the datasets and tools of our study
at https://github.com/SIGCOMM21-5G/artifact.
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1 INTRODUCTION
5G New Radio (NR) specifications [20] open a wide spectrum of
frequencies. High-band millimeter wave (mmWave) 5G, along with
its mid-/low-band sub-6 GHz counterpart, make up the current 5G
market. We pay close attention to mmWave 5G due to its ultra-high
bandwidth which attracts emerging bandwidth-hungry applica-
tions. On the other hand, mmWave is very sensitive to factors
such as mobility and blockage due to its much shorter wavelength,
making the upper-layer network management (e.g., bitrate adap-
tation of video streaming) more challenging. Despite numerous
studies on modeling and simulation of mmWave links [27, 29, 34,
35, 50, 67, 68, 70], the impact of mmWave on commercial 5G perfor-
mance, power consumption, as well as mobile application Quality-
of-Experience (QoE) is largely under-explored.

In addition to its high bandwidth and low latency enabled by
physical-layer innovations (e.g., massive MIMO, advanced chan-
nel coding, etc.), power saving is a top concern to mobile users
of 5G. In cellular networks, this is usually achieved by different
Radio Resource Control (RRC) states. 5G makes no exception. It is
thus important to understand the RRC state machine of commer-
cial 5G networks and its implications. To reduce time to market,
most carriers employ the Non-Standalone (NSA) mode for their
initial deployment. NSA leverages 5G for data plane operations
while reusing the existing 4G infrastructure for control plane op-
erations, making the RRC state machine 4G-like. Very recently,
Standalone (SA) 5G deployment has hit the commercial landspace.
SA is completely independent of the legacy 4G cellular infrastruc-
ture, fully unleashing the potential of 5G. The configurations of
key parameters in the state machine lead to important performance
and energy trade-offs. They are usually carrier-specific and can be
very different between NSA and SA deployment modes.

In order to understand commercial 5G networks’ end-to-end
performance and power characteristics, as well as their Quality of
Experience (QoE) implications on mobile applications, in this paper,
we conduct a comprehensive yet in-depth measurement study of
two commercial 5G networks in the US. As 5G technology evolves,
its performance is expected to improve over time. We therefore
compare our measurement results with earlier studies to get the
initial longitudinal insights on 5G’s evolution. We also compare
our findings on mmWave with its low-band counterpart. Our study
faced a number of challenges:
• 5G-NR supports a wide range of frequency spectrum: low-band,
mid-band, and mmWave. All these frequency bands have different
performance and signal propagation characteristics. Additionally,
5G can be deployed in either SA or NSA mode, which further has
implications on performance [30]. Conducting ameasurement study
on such a heterogeneous ecosystem is challenging.
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• The coverage of different bands and deployment modes is often
sporadic. For instance, in the case of mmWave with poor signal
propagation characteristics, most of its deployment is outdoor. Sur-
veying the availability of band-specific 5G service requires extensive
field experiments.
• Evaluating mobile carriers’ end-to-end network performance in
the wild is known to be difficult. Many entities can become the
performance bottleneck including the Internet, mobile carrier’s
infrastructure, as well as end devices themselves. Identifying the
bottleneck in mmWave 5G is particularly challenging due to its
ultra-high bandwidth.
• 5G power measurement is not trivial. The state-of-the-art hard-
ware power monitors often require a stable external power supply,
making mobility experiments difficult to perform in the wild. In
addition, vendors have been making smartphones more “closed” by
integrating the battery and back cover with the main body. Skilled
engineering efforts are required to connect off-the-shelf 5G smart-
phones to a power monitor. It’s not easy to connect any commodity
off-the-shelf (COTS) 5G capable smartphones to a power monitor
and conduct outdoor experiments.
• To understand the benefits that 5G brings to mobile applications
and to identify the new challenges in 5G, we need fair comparisons
with the 4G baseline. However, 4G and 5G have very different
characteristics, making it difficult to experimentally compare them
in a fair, efficient, and representative way.

To address these challenges, we first build a holistic testbed con-
sisting of commercial 5G smartphones, external power monitors,
and cloud servers. We further develop a set of software and hard-
ware tools to control the workloads and physical environments,
as well as to log important information at different layers in a
fine-grained manner. Through carefully designed experiments, we
demystify the current 5G performance, power, and QoE implica-
tions with special emphasis on mmWave. Our experiments over a
4-month period consumed more than 15 TB of cellular data. The
key contributions of our study are summarized as follows.
• We perform a detailed performance examination of 5G over mul-
tiple frequency bands including sub-6 GHz and mmWave. We find
that both their throughput and latency have experienced noticeable
improvements compared to its initial deployment. The end-to-end
performance is highly correlated with geographical properties. We
quantify such properties and their vastly different impacts on NSA
and SA 5G. In particular, we perform experiments over T-Mobile’s
SA 5G deployed for their low-band network. This is to our knowl-
edge the first examination of commercial SA 5G performance.
• Through principled probing algorithms, we infer the RRC states
and configuration parameters for SA 5G (T-Mobile) and NSA 5G
(Verizon and T-Mobile). For NSA 5G that relies on 4G as an anchor,
we find that the NR_RRC_CONNECTED to LTE_RRC_IDLE state transi-
tion (due to data inactivity on UE) for the carriers considered in our
study is 2× more energy efficient than those studied in a previous
NSA 5G measurement study [59].
• We take a closer look at the power characteristics of 5G and
4G/LTE. Over downlink (uplink), 5G can be 79% (74%) less energy-
efficient than 4G at low throughput but up to 5× (2×) more energy-
efficient when the throughput is high. Using a data-driven approach,
we build a first throughput and signal strength-aware radio power
model for different frequency bands of 5G.

Table 1: Statistics of the data collected using two commercial
5G carriers: Verizon and T-Mobile.

Dataset Statistics

5G Network Performance Tests 12,500+
Unique servers tested with 157+
Cumulative time of measurement traces 2,666 minutes+
Power Measurements @ 5000 Hz 2,336 minutes+
Total kilometers walked 148.5 km+
# of real Web Page Load Tests 30,000+
# of 5G smartphones (and models) 7 (3)

•We conduct a first evaluation of state-of-the-art adaptive video
bitrate adaptation (ABR) algorithms over mmWave 5G, which is the
key radio technology for supporting ultra-high definition (UHD)
videos and beyond. We find that due to the poor signal propa-
gation characteristics of mmWave 5G, existing ABR mechanisms
over mmWave 5G can incur ∼3.7% to 259.5% higher stall time than
4G/LTE. We propose simple yet effective interface selection mech-
anisms for 5G video streaming. It can yield a 26.9% video stall
reduction and a 4.2% improvement in energy efficiency without
compromising user-perceived video quality, compared to unmodi-
fied streaming algorithms.
• We collect a large dataset consisting of more than 30,000 web
page loadings of diverse websites, and use it to compare mmWave
5G vs. 4G page load time and energy consumption. We find that
overall 5G improves the page load time at the cost of higher en-
ergy consumption compared to 4G. Moreover, this impact is highly
web-page-dependent. We build decision tree models that can intelli-
gently select the appropriate network (5G or 4G) for web browsing.
•We have released the functional artifacts (both datasets and tools)
of our study: https://github.com/SIGCOMM21-5G/artifact.
Ethical Considerations. This study was carried out by paid and
volunteer students. No personally identifiable information (PII)
was collected or used, nor were any human subjects involved. We
purchased multiple unlimited cellular data plans from Verizon and
T-Mobile. Our study complies with the wireless carriers’ customer
agreements. This work does not raise any ethical issues.

2 MEASUREMENT SETTINGS & TOOLS
5G Carriers, 5G Bands and Locations. Since its commercial
launch, the 5G ecosystem – which includes service deployments,
coverage, 5G-capable devices – is rapidly expanding and evolv-
ing. In our measurement study, we select two commercial carri-
ers in the US for our experiments – Verizon and T-Mobile. While
both these carriers have deployed 5G services on several bands,
in our dataset, we find that Verizon has deployed NSA-based 5G
service that provides both mmWave 5G over 28/39 GHz frequency
bands (n261/n260) and low-band 5G (n5) w/ 4G bands by lever-
aging dynamic spectrum sharing (DSS) technology. In contrast,
T-Mobile provides low-band (@ 600MHz or n71)1 5G service using
both NSA and SA modes. The measurement study is conducted in
two US cities where both carriers have deployed 5G services. Key
statistics of the datasets collected are summarized in Table 1.
5G UE and Android Measurement Tool.We use multiple smart-
phone models of user equipment (UE) with 5G support: Google

1T-Mobile also provides NSA-based mid-band (n41) and mmWave 5G (n261/n260) in
select areas, however these services were not considered in this study.

https://github.com/SIGCOMM21-5G/artifact
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Pixel 5 (PX5), Samsung Galaxy S20 Ultra 5G (S20U) and Samsung
Galaxy S10 5G (S10). These phones have diverse specifications. For
instance, compared to PX5, S20U has a superior chipset, 5G modem,
increased RAM and CPU frequencies. We make considerable ad-
ditions to 5G Tracker [41] and build a comprehensive monitoring
toolkit with various functions to monitor network traffic, battery
status (current and voltage), signal strength etc.. Some of these
functions require rooting the phones. We use both rooted and non-
rooted phones (based on needs) to measure various aspects of 5G
performance and power usage under different settings.
Power Monitoring Tool. We use Monsoon Power Monitor [17]
to power smartphones and measure the power consumption. For
outdoor walking experiments, we use a portable external power
source to supply power to the monitor.

3 IMPROVEMENTS AND NEW FINDINGS IN
5G NETWORK PERFORMANCE

In this section, we closely examine the end-to-end network perfor-
mance of commercial 5G networks by conducting several carefully
designed experiments in the wild.

3.1 Measurement Methodology
Challenges. There are several known challenges while evaluating
end-to-end network performance of mobile carriers in the wild.
[C1] First, Internet-side congestion can adversely affect network
performance. [C2] Secondly, we also have no clear visibility into
the carrier’s network/transport infrastructure and policies enforced
by them. [C3] Finally, there is significant diversity in end-device
(e.g., server or smartphone) specifications and capabilities which
can affect network performance.
Methodology. We now describe our carefully designed method-
ology for evaluating 5G network performance. Ookla’s Speedtest
service [43] is a widely used and state-of-the-art tool for testing
Internet connection bandwidth and latency. By default, Speedtest
chooses a geographically nearby server with the least round-trip
latency to measure downlink/uplink throughput. They also al-
low users to choose a server from a pool of geographically dis-
tributed servers. More importantly, both the 5G carriers studied
host servers on Ookla. For instance, Verizon hosts 48 servers while
T-Mobile hosts 47 servers. These are mainly located in major metro-
politan U.S. cities. We leverage the flexibility of server selection as
well as the carrier’s presence in Speedtest’s pool of server network
to evaluate a carrier’s network performance by conducting several
tests on carrier-hosted servers. Particularly, this strategy helps us
reduce the impact of [C1] and [C2] on our measurement tests.

The default policy of server selection from Speedtest is to choose
a server located in the same city as the UE. Our results (Fig. 24
in Appendix A.2) also further confirm that using carrier-hosted
Speedtest servers (especially if one is available in the UE’s city) usu-
ally provides best performance over non-carrier based servers. Even
when testing using carrier-hosted servers in other states and cities,
we believe this strategy helps eliminate most of the Internet side
bottleneck as the carrier would usually place Speedtest servers at
the edge of the carrier’s city-level ingress points. Speedtest service
uses TCP protocol for all its tests. Speedtest additionally also allows
us to conduct a test in one of the two connection modes: (i) us-
ing a single connection and (ii) using multiple connections that
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Figure 1: Impact of UE-Server distance on RTT.

is non-configurable. The number of multiple connections varies
from one test to another, and the algorithm is not disclosed on
how Speedtest decides the number of connections to establish for
a test. To account for this limitation, we also provision VMs with
high network-throughput (in different U.S. locations) provided by
Microsoft Azure’s public cloud service. This allowed us to evaluate
the impact of different transport layer protocols and parameters.

Lastly, we take two steps to address [C3]. First, to account for UE
diversity, we use two 5G smartphones: PX5 and a more powerful
S20U (§2). Secondly, in addition to the carrier-hosted Speedtest
servers, we also use all the Speedtest servers located in the local
state of the UE. This allows to reduce the impact of geographic dis-
tance on network performance, rather allows us to understand the
impact of other potential server-side factors over 5G network per-
formance. For each unique <UE-model,carrier,server> setting,
we repeat the test at least 10 times per connectionmode. Our dataset
contains over 12,500 Speedtest measurements2. We report the 95th
percentile performance results of all Speedtest sessions repeatedly
conducted for a setting. In other words, our approach measures
the peak network performance, and should not be confused with
the user perceived network quality metrics [5]. Focusing on the
peak metrics helps us to further reduce the impact of congestion
and other Internet-side factors on our performance measurements,
and rather helps us understand the impact of UE-Server distance
and radio technology/band over network performance. Having this
information is particularly important for application and service
providers so that they can better harness 5G. Unless specified other-
wise, all mmWave-5G based experiments were conducted outdoors
and the UE was held stationary with clear LoS to the 5G tower.
Baseline. To provide the initial longitudinal insights of commercial
5G’s network performance in the US, we consider 5Gophers [39]
dataset (reportedly measured in the US as of October 2019) as the
baseline for comparing results.
3.2 Impact of UE-Server Distance
Round-Trip Time (RTT). By tapping into the 5G carriers’ nation-
wide network of Speedtest servers, we next quantify the impact of
UE-Server distance over RTT. Fig. 1 shows the latency characteris-
tics of Verizon’s mmWave 5G service for different server locations
on a geographic map. UE’s location is fixed as Minneapolis, MN.
Clearly, RTT degrades severely as the UE-Server distance increases.
The lowest observed RTT is ∼6ms when tested with a server located
closest (∼3 km) to the UE. Compared to latency observed back in
2019 [39] (i.e., during early deployment), this is a∼50% improvement

2We developed scripts for Android smartphones to completely automate the process
of conducting a test using Ookla’s Speedtest service (free version).
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Figure 2: [Verizon] Latency.
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Figure 3: [Verizon] Downlink.
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Figure 4: [Verizon] Uplink.
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Figure 5: [T-Mobile] Latency.
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Figure 6: [T-Mobile] Downlink.
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Figure 7: [T-Mobile] Uplink.
over the baseline performance. RTT gets doubled as the UE-Server
distance increases to 320 km. This trend is more clearly visible in
Fig. 23 which further signifies the importance of edge computing
for latency-sensitive apps and services. Fig. 2 also compares RTT
values of mmWave 5G against that of low-band 5G and 4G/LTE. We
find that low-band 5G suffers an additional delay of ∼6 to 8 ms over
mmWave 5G across the entire UE-Server distance range. This is
not surprising as mmWave 5G bands (n260/n261) with higher sub-
carrier spacing and shorter OFDM symbol duration lead to lower
latency when compared to low-band 5G [53, 54]. On the other hand,
due to flexible frame structure and fine-grained transmission time
interval (TTI) in 5G NR, we find both low-band and mmWave 5G
exhibit better RTT (6 to 15ms reduction) than LTE. Similar experi-
ments were also conducted over T-Mobile’s network (including SA
Low-Band 5G) and results are shown in Fig. 5. While the earlier
trend observed in Verizon’s network about the impact of UE-Server
distance over RTT also holds true for T-Mobile’s network, we do
not find any significant difference yet in RTT performance between
T-Mobile’s SA and NSA deployments of low-band 5G.
Throughput. Fig. 3 shows the impact of UE-Server distance on
VerizonmmWave 5G downlink throughput performance. With mul-
tiple TCP connections, the UE is able to achieve an impressive
downlink throughput of over 3 Gbps across all the servers in the
US. This is a ∼50-60% improvement over the baseline. We attribute
this improvement to ramping up of carrier aggregation from 4CC
to 8CC which requires improvements in carrier’s infrastructure
as well as the UE’s chipset specifications (see Appendix A.1). As
pointed out earlier, Speedtest does not allow us to control the num-
ber of TCP connections for a test. Using packet dumps, we found
that Speedtest would establish anywhere between 15 to 25 TCP
connections for the multiple connection test. The packet loss rate
was less than 1%. However, with a single TCP connection, we find
that the throughput degrades as the UE-Server distance increases
(see Fig. 3). We suspect this degradation is due to the: (1) increase
in RTT which is known to affect TCP performance, (2) packet loss

3Figures 2 to 7 shows servers located in the conterminous US region only.
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Figure 8: Single conn. downlink throughput across all US-
basedAzure regions under different transport layer settings.

(even at the slightest rate). The impact of both coupled with exist-
ing TCP mechanisms gets amplified at ultra-high bandwidth levels
thus degrading TCP performance. Nonetheless, compared to the
baseline, we find there is a significant improvement in the single
TCP (1-TCP) connection’s performance. 1-TCP connection (with
less overhead compared to multiple connections) can also achieve
close to 3 Gbps throughput provided the server is much closer to
the UE. This again signifies the importance of the edge especially
for bandwidth-hungry applications. Uplink throughput (see Fig. 4)
performance has also improved by a factor of 3× to 4× over the base-
line. Both single and multiple connection uplink tests can achieve a
throughput of ∼220 Mbps. On the other hand, for T-Mobile which
also has SA-based deployments for the low-band 5G, we find that
both downlink and uplink performance can achieve only half the
performance of what their low-band NSA 5G service can provide
(see Figs. 6 and 7). We believe this to be due to carrier aggregation
not yet supported for SA or that the 5G core is not fully mature to
provide the benefits envisioned by SA 5G.
Taking a Closer Look at Single-Conn. Throughput. To get
a better understanding of single-connection’s performance with
mmWave 5G (known to provide ultra-high bandwidth capacity),
we perform controlled experiments using Microsoft Azure’s public
cloud service. We provision a high-network bandwidth capacity
VM (Type: DS4_v2) at every region in the US provided by Microsoft
Azure. In order to capture packet dumps and have the ability to
change kernel parameters, we use rooted PX5 to conduct these
experiments. Unlike S20U that can achieve a throughput of more
than 3 Gbps, PX5 has a maximum observable downlink throughput
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across different low-band frequency settings.
of ∼2.2 Gbps (see Appendix A.1 for details). For TCP, we use CUBIC
TCP [16] as the congestion control algorithm. The experimental
setup uses UDP performance as baseline. As shown in the results
(see Fig. 8), UDP is able to achieve peak observable throughput
across all the server locations.We observe a small yet noticeable gap
between UDP and 8-TCP performance most likely due to the proto-
col overhead of TCP. However, with default Linux kernel (v4.18.0)
parameters for TCP, we find 1-TCP connection’s throughput is
limited to no more than 500 Mbps for all servers. Upon further
investigation, increasing the maximum size of TCP write buffer
(tcp_wmem) parameter of Linux’s TCP kernel significantly improves
the UE’s downlink throughput using 1-TCP connection by a factor
of 2.1× to 3× (denoted as “1-TCP tuned” in Fig. 8). Theoretically, the
sender’s TCP buffer size (which is a per socket configuration) must
at the least be equal to the bandwidth-delay product (BDP) of the
high-throughput flow’s capacity. In other words, transport-layer
kernel parameters should be carefully tuned to meet the desired
application QoE requirements. Nonetheless, even the tuned 1-TCP
performance falls short by ∼886 Mbps on average when compared
to UDP. Similar to the impact of UE-Server distance observed ear-
lier in Fig. 3 for the single-connection performance using Ookla’s
Speedtest service, we make similar observations in performance
under controlled experimental settings using Azure servers. In that,
we again find that TCP performance (including that of 1-TCP tuned)
exacerbates as the UE-Server distance increases. These observations
highlight the inefficacies that exist in current TCP and congestion
control mechanisms over mmWave 5G networks.

3.3 Handoffs in (Low-Band) NSA & SA 5G
Previous studies on handoffs4 of NSAmmWave 5G [39] have shown
that compared to 4G/LTE, there are far more frequent handoffs.
This is mainly due to the smaller coverage footprint of mmWave
towers as well as that NSA 5G still relies on LTE for control plane
signaling. In this preliminary study, we however focus on compar-
ing T-Mobile’s SA 5G with NSA 5G that are commercially deployed.
T-Mobile is the only carrier that has deployed both NSA and SA-
based 5G for their low-band network. To obtain connectivity to
SA 5G (over n71 band), it was critical to use T-Mobile’s firmware
in S20U. We selected a 10 km driving route which traversed via
busy downtown regions and freeways with driving speeds ranging
from 0 to 100 kph. Using Samsung’s service code (*#2263#), we
selectively enable a set of radio bands to configure the UE in one of
the 5 setting: (i) enable SA-n71 band only, (ii) enable NSA-n71 and
LTE bands only, (iii) enable LTE bands only, (iv) enable SA-n71
and LTE bands only, and, (v) enables all bands (default setting). For
each configuration, while the UE was handheld by a passenger, we
4Handoff here refers to the change in tower or data transmission technology.

drove the route 2× per direction and monitored the handoff activity.
Fig. 9 shows a representative set of results. There are five horizontal
bars, one for each of the 5 band configuration settings. Within each
horizontal bar, there are several colored-segments that denoted the
active radio (blue for 4G/LTE, orange for NSA-5G, and green for
SA-5G). Ticks on these bars indicate the occurrence of a horizontal
handoff (i.e., across towers) or a vertical handoff (i.e., across radio
technologies). The most important finding here is that SA 5G has
far fewer handoffs (i.e., 13 handoffs) compared to other configura-
tions, NSA-5G + LTE (110), LTE (30), SA+LTE (38) and all bands (64).
These will have implications not just on control plane signaling
and scheduling overheads, but also over network performance. Due
to increased coverage of the low-band RF n71 band, both SA and
NSA over n71 band experience very few horizontal handoffs (13 to
20). But, in NSA, we found close to 90 vertical handoffs (e.g., 4G to
5G or vice-versa) highlighting the complexities involved in NSA.

Now that we have seen the network performance characteris-
tics of different 5G technologies, next we investigate how such
performance characteristics impact power.

4 POWER CHARACTERISTICS
In this section, we discuss the power characterization of 5G net-
work and compare with the latest 4G results. To better understand
the UE’s power consumption, we construct power models for dif-
ferent 5G networks with multiple factors including signal strength,
throughput, and frequency bands.

4.1 Methodology
RRC state inference.We first derive the built-in radio state ma-
chine which was designed for power management of mobile de-
vices, e.g., parameters of RRC states and transitions for 4G [12]
and 5G [13]. For the parameter inference, we improve a network-
based approach used in [31, 51] to build our own inference tool,
RRC-Probe, in which a server sends UDP packets to a client (UE) at
different packet intervals and the UE sends an ACK once a packet
is received. The length of RTT depends on the UE’s instant RRC
state when receiving the packet. Therefore, by measuring the RTT
for different packet intervals, we can identify different states and
calculate the timers for the transitions between states. Note that
this approach does not require root access on smartphones.
Power measurement. We use Monsoon power monitor [17] to
measure the UE’s power consumption for two purposes: First, we
aim to understand power consumption during RRC state transitions.
To measure this, the UE is left idle without any data activity for
sufficient time (20s in our experiments) thus forcing the UE to be
in RRC_IDLE state. A server then sends a packet to the UE which
subsequently triggers an RRC_IDLE → RRC_CONNECTED transition
and switch to 5G. Then the UE starts its inactivity timer and de-
motes to RRC_IDLE at the end. In this way, the power monitor can
capture full tail period5 for RRC_CONNECTED. Second, to study
the throughput-power relationship and its implications on energy
efficiency, we control the UE’s data transfer throughput while mea-
suring its power. To reduce the impact of power consumption due
to display screen and brightness, we set the screen at the maximum

5The period after Continuous Reception (i.e., when UE finishes its data transfer) and
before demoting to RRC_IDLE in which there are discontinuous reception cycles
(DRX) and the UE can reduce power consumption.
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brightness level and subtract the screen power (which is obtained
separately) from the total when presenting the results. In this study,
power (in W) refers to energy consumed per unit time.
Data Collection Methodology.We conduct both controlled and
in-the-wild walking experiments to collect network and power
traces at two different cities in the US – Minneapolis (MN) and
Ann Arbor (MI) – using two commercial 5G carriers (Verizon and T-
Mobile). For Verizon, we collect data for their NSA-based mmWave
5G as well as their low-band 5G service. For T-Mobile, we focus on
their low-band 5Gwhich is deployed in both SA andNSAmodes. For
all our experiments, we use two models of 5G smartphones: S10 and
S20U. For thewalking experiments, we fixed a 20-min loop (∼1.6km).
While low-band 5G connectivity for both carriers was omnipresent,
mmWave was rather limited. The loop contained three mmWave
5G towers each fitted with three directional mmWave transceivers.
We collect 10 traces for each unique carrier-mode-band setting
(e.g., Verizon-NSA-Low Band). The power monitor collects data
at 5000Hz while we set the network logging rate at 10Hz. As the
traces are collected separately by 5G Tracker tool [41] andMonsoon
power monitor, we synchronize them by starting both loggers at the
same time and further verify by correlating measurements activities
known to cause significant power jump.

4.2 RRC Parameters and Power
Using RRC-Probe, we infer a list of RRC parameters for 4G and
5G (see Table 7 in Appendix A.3 for details). From the results, we
find that the timers of NSA 5G and 4G LTE are very similar. This
is because NSA 5G still retains the existing 4G infrastructure for
control plane operations while innovating the data plane to enhance
the network capacity.

Fig. 10 illustrates the results of inferring the RRC states. For
NSA 5G, the RRC states are basically the same as 4G. However,
according to the 5G-NR specifications [20], a new RRC state called
RRC_INACTIVE is introduced in SA 5G.We believe this new state can
be seen in Fig. 10 (see top left part representing T-Mobile SA 5G).
We find that the UE remains in this state for about 5s (i.e., 10s to 15s
of interval) before transitioning to RRC_IDLE. The main purpose
of this state (akin to a low-power state) is to provide an efficient
mechanism for the UE’s radio to sleep (thus saving power) and at
the same time enable a quick and lightweight transition back to
the RRC_CONNECTED state (thus improving latency by reducing
the radio’s wake up time). These benefits are largely achieved by
reducing the control plane signaling overhead. Besides, we notice
that T-Mobile SA 5G has a tail timer of 10s which is similar to that
of T-Mobile NSA 5G and Verizon NSA 5G, indicating UE directly
enters RRC_IDLE after leaving RRC_CONNECTED. We also confirm
the timers using Monsoon power monitor. This is different from
the observations in [59] that found the 5G tail is 20s, i.e., 2× of 4G
tail (10s), which indicates the 5G module must go through both 5G
and 4G tails before entering RRC_IDLE. Careful attention needs to be
given in configuring such timers as they impact energy efficiency.

We next study the impact of 5G on power during RRC state tran-
sitions. We calculate the tail power by averaging the power readings
during the entire tail period considering both DRX On duration and
the rest of the DRX cycle. As shown in Table 2, 5G consumes more
energy than 4G during the tail period and for mmWave 5G the tail
power is especially higher. This is likely because the UE’s radio
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Figure 10: Results of inferring different RRC States using
RRC-Probe for SA 5G, NSA 5G and 4G/LTE.

Table 2: Power during RRC state transitions.

Carrier Network Power (mW)
Tail 4G→5G switch

Verizon 4G 178 N/A
T-Mobile 4G 66 N/A
Verizon NSA 5G (low-band,DSS) 249 799
Verizon NSA 5G (mmWave) 1092 1494
T-Mobile NSA 5G (low-band) 260 699
T-Mobile SA 5G (low-band) 593 245

remains active during the tail period in order to wake up periodi-
cally for paging and 5G radio consumes more power than 4G (when
the throughput is zero, shown later in §4.3). Further taking into
account the 4G → 5G switch power which consumes additional
power and is very common (see Fig. 9), 5G is less efficient in terms
of state transitions. Therefore, to save power, traffic patterns like
periodical data transmission or intermittent waking up should be
avoided under 5G. One solution would be forcing the UE to stay in
4G when high throughput is not needed.

4.3 Power for Data Transfer
Previous work on 3G/4G power modeling [31] has constructed
power models for data transfer by taking into account the device
throughput and concluded that higher throughput leads to higher
power consumption. As 5G (esp.mmWave) can providemuch higher
throughput compared to 4G, we study how throughput affects the
device power over 5G.With controlled experiments, wemeasure the
device power when transferring data at different download/upload
throughput over 4G and 5G. We run UDP data transfer and vary the
target throughput using iPerf3. To reduce the impact of poor signal
propagation issues of mmWave 5G, we run the experiments by
hand-holding the smartphone at a fixed location with Line-of-Sight
(LoS) to a 5G panel.
4G vs. 5G. Fig. 11 presents the relationship between throughput
and power with a comparison between 4G/LTE and 5G. We also
show this relationship across two different bands of 5G: NSA low-
band (LB) and NSA mmWave. These experiments were done on
S20U6 over Verizon. We can find that for both 4G and 5G, and for
both uplink and downlink directions, the power increases linearly
as throughput increases. However, the power for mmWave 5G
(uplink and downlink) increases at a slower rate than for the other
two radio networks. Although at low throughput levels the power
consumption for mmWave 5G is higher, it becomes more efficient
when the throughput is high. As seen in Fig. 11, the crossover point
6Appendix A.4 includes additional results comparing mmWave 5G vs. 4G using S10.
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Figure 12: Throughput vs. energy efficiency for 4G and 5G.
at which mmWave 5G becomes more efficient than 4G and low-
band 5G is: (1) 187 Mbps and 189 Mbps for downlink; (2) 40 Mbps
and 123 Mbps for uplink. These results clearly reveal the power-
performance relationships (and trade-offs) between not just 4G
and 5G but also the different bands within 5G. Note that different
UE models may have varied levels of power consumption [24].
Similarly, we can observe different crossover points in throughput-
power curves between S20U and S10 (see Appendix A.4 for more
details). It is also interesting to compare the slopes between low-
band 5G and 4G/LTE. In the downlink direction, the slopes of LB-5G
ad 4G/LTE are almost identical. In the uplink direction though, LB
5G is much more efficient than 4G/LTE. Next, we calculate the
proportion of power consumed by data transfer activity out of total
power. On average, data transfer in mmWave 5G consumes 48-76%
of the total power consumption for downlink and 46-66% for uplink,
while the same for 4G are 21-53% (downlink) and 20-66% (uplink).
This is similar to what was also observed earlier by Xu et al. [59] (for
mid-band 5G). But our results show that the upper bound for 5G
downlink is higher by an additional 21% when compared to [59],
which is likely due to higher data rates offered by mmWave 5G.

We further calculate the energy efficiency (energy per bit) and
plot the results in Fig. 12 with a log scale, where we can also con-
clude the higher efficiencywhen transferring at higher speeds under
5G. 5G can be 79% (74%) less efficient than 4G at a low throughput
but up to 5× (2×) more when the throughput is high, for downlink
(uplink). In fact, this can also be confirmed from mathematical mod-
eling: Assume the device power is 𝑃 , energy efficiency is 𝐸 and the
throughput is𝑇 , we will have 𝑃 = 𝑐1∗𝑇 +𝑐2 and 𝐸 = 𝑃/𝑇 = 𝑐2/𝑇 +𝑐1.
So we can get log𝐸 ≈ 𝑐3 ∗ log𝑇 + 𝑐4, by taking logarithm on both
sides of the equation. Here 𝑐𝑖 is constant.
Downlink vs. Uplink. We also compare the downlink transfer
with uplink transfer for 4G and 5G (Fig. 11). Based on the carrier
configurations, we conclude that the rate of increase in power
consumption for uplink is higher by 2.2× to 5.9× than downlink (see
Appendix A.4), which is in consensus to prior work on 3G/4G [31].

4.4 Impact of Signal Strength on Power
In addition to throughput, there are other factors affecting the
power consumption during data transfer. For example, poor wire-
less signal strength can negatively affect the device power sav-
ing [26, 55]. Moreover, due to poor signal propagation, mmWave’s
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signal strength are known to fluctuate frequently and wildly due
to impact of UE-side factors such as mobility or signal reflection
characteristics of the surroundings (e.g., open space vs concrete
buildings) [40].

We conduct in-the-wild data transfer experiments to collect net-
work throughput and power traces at two locations withVerizon 5G:
(1) Ann Arbor, MI: mmWave 5G only, (2)Minneapolis, MN: both
mmWave and low-band 5G. Fig. 13 summarizes how power can
be affected by both RSRP and throughput. From the results, we
find that (1) higher throughput leads to higher power consump-
tion; (2) Signal strength also affects the power consumption, which
aligns well with earlier findings (§4.3) and previous work [26]. To
better isolate the impact of signal strength and understand how
it affects power consumption, we show the energy efficiency for
different signal strength (RSRP) levels in Fig. 14. As NR-SS-RSRP
increases, the energy per bit decreases. This indicates that better
signal strength leads to improved energy efficiency. Moreover, for
Minneapolis (see right-plot on Fig. 13), we can clearly see there
are two clusters of data points. By looking at the network status
information, we further confirm that the points in the upper-left
cluster represent the data collected when the device is connected
to low-band 5G while the other points are for mmWave 5G. In Ann
Arbor, we only see mmWave 5G in the logs. Hence, we quantita-
tively observe that the power consumption varies across different
5G bands that the device is actively using.

4.5 5G Power Model Construction
Previous studies either only consider downlink/uplink through-
put [31] or signal strength [24, 42] when modeling the device power
for data transfer. However, neither of the assumptions hold given
the high variability of 5G throughput in particular for downlink
and the vulnerability of 5G signal to the physical environment.
Besides, we have seen different bands can have varied power con-
sumption characteristics, hence, it is also important to take into
account the band information. To improve model accuracy, we pro-
pose to build a network power model for 5G by considering both
signal strength and throughput. Based on the observations in §4.3,
a linear model can fit well for both uplink and downlink if we solely
consider throughput while controlling other factors. However, our
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mance of different models.

Figure 16: Software monitor
calibration.

preliminary experiments show that linearly regressing with mul-
tiple factors such as throughput and signal strength together on
our walking dataset leads to even higher errors compared to only
considering throughput, indicating that the diverse array of multi-
ple impacting factors may not be accurately fit linearly, we instead
turn to machine learning-based data-driven approaches to identify
the relationships among features for power modeling. Specifically,
we apply the Decision Tree Regression (DTR) algorithm.
Model Evaluation.We construct our models and evaluate using
a standard metric for regression performance – Mean Absolute Per-
centage Error (MAPE) to reflect the accuracy of our model in terms of
relative errors. As observed in §4.4, we construct the power model
for different devices (S10, S20U), networks (Verizon, T-Mobile), and
radio technologies (NSA/SA, mmWave/low-bands) separately. Note
we build models for each setting as opposed to using such infor-
mation as a feature in the model. We also generate models using
previous approaches for comparison. We plot the performance
results for all the models in Fig. 15, in which TH+SS represents
our model which takes into account both throughput and signal
strength while TH and SS represent the models generated only con-
sidering throughput or signal strength, respectively. Our models
always outperform the models generated from both the previous
approaches, which indicates that both features play an important
role in affecting the device network power consumption. Without
considering the throughput information, the errors of SS models
are found to be huge compared to TH+SS, especially for mmWave
(high-band, HB) which can deliver ultra-high bandwidth. For ex-
ample, using S20U, Verizon’s mmWave 5G service can provide up
to 3 Gbps (see in §3.2). S10 achieves around 2 Gbps over Verizon
mmWave 5G (similar to PX5, see Appendix A.1 for details). This
highlights the importance of throughput information for the power
model construction, especially for mmWave-based networks. Note
that there are performance differences between the models con-
structed using data from different devices (e.g., between first two
models). Not surprisingly, this signifies that different devices have
different hardware specs (e.g., chipset lithography) that impact
power consumption.
Validation on Real Applications. Finally, we evaluate the ac-
curacy of our power model by running two real-world applica-
tions: (1) video streaming over YouTube app; (2) web browsing
over Google Chrome Browser app. For video experiments, we play
a video [4] at 2K resolution, in both online mode (over cellular ra-
dio) and offline mode (downloaded to SD card). To get the network
energy consumption, we subtract the total offline energy which
contains energy consumed by decoding and rendering of video
from the total energy measured when running online. Similarly
for web experiments, we download the whole website to SD card

Table 3: A higher sampling rate incurs more overhead.
Activity Average Power (mW)
Idle 2014.3

Monitor on (1Hz) 2668.5
Monitor on (10Hz) 3125.7

and open the locally stored homepage (.html) file on Chrome to
load the website in offline mode and then compare the same when
loaded in online mode. We compare the energy consumption esti-
mated by our model with the actual energy consumption measured
by Monsoon power monitor. The average relative errors are 3.7%
for video streaming and 2.1% for web browsing.

4.6 Software power monitor calibration
Although hardware power monitors such as Monsoon [17] pro-
vides highly accurate power readings of mobile devices by di-
rectly supplying power to them, it will be extremely inconvenient
for users to retrieves such information in daily use. In particu-
lar, it requires non-trivial hardware engineering efforts on cur-
rent COTS smartphones (e.g., remove the non-removable back
cover and battery). Android exposes battery status such as current
(/sys/class/power_supply/battery/current_now) and voltage
(/sys/class/power_supply/battery/voltage_now) which can
be used to measure the device power. Thus, besides different im-
pacting factors for power model construction, we also study the
accuracy of battery status (current, voltage) readings and whether
it can be calibrated and further used to report the device power.
First, we run different activities and collect battery status using the
software (API) and hardware (Monsoon) and calculate the average
relative errors. The software approach always underestimate the
power (Table 9 in Appendix A.5). A higher sampling rate may help
provide better estimation, but this will incur higher energy over-
head (Table 3). Next, we use DTR to calibrate the software power
values. Fig. 15 shows the calibration performance (SW) together
with ourTH+SSmodel results. After calibration, the software-based
approach can achieve comparable performance. A higher sampling
rate (e.g., 10Hz) can even lead to better performance (i.e., lower
MAPE). However, we argue that a higher sampling rate will incur
higher overhead which is less energy-efficient.

To summarize, we empirically characterize several impacting
factors such as signal strength and throughput over power consump-
tion by smartphones using 5G services. We propose an ML-based
data-driven approach to construct power models for 5G networks.
We demonstrate that our models help increase accuracy in predict-
ing device power consumption. We show that the software power
monitor can achieve comparable accuracy after calibration.

Next, we take a closer look at two popular mobile applications,
video streaming and web browsing, both combined are expected to
cover more than 80% of the mobile traffic share by 2025 [8]. We look
at them from the perspective of both application QoE and energy
efficiency. We believe the proposed power models can be useful to
aid developers in making their application more energy-efficient.
For the following sections, we focus on mmWave 5G which are
considered key to mainstream 5G and have not been studied before
in the context of mobile applications.

5 VIDEO STREAMING OVER 5G
Adaptive bitrate (ABR) algorithms are the primary tools used to op-
timize video quality of experience (QoE). The research community
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has proposed a plethora of ABR algorithms for video streaming
in recent years [33, 38, 61, 62]. In this section, we demystify 5G’s
implication on video streaming by conducting the first in-depth
investigation of ABR streaming QoE over 5G with mmWave. We
aim to answer the following questions:
• What’s the performance footprint of the current state-of-the-art
ABR algorithms under 5G and how does it compare with 4G?
• What are the major factors that impact ABR streaming perfor-
mance over 5G?
•What newmechanisms are needed tomake future ABR algorithms
5G-aware and further improve the QoE?
5.1 Evaluation Methodology
Our testbed consists of an Apache server hosting the videos and a
DASH.js [15] video client. We use trace-driven emulation to ensure
that all algorithms experience the same set of network conditions.
We use the Lumos5G dataset [40] which contains 121 5G and 175
4G throughput traces, collected at 1-second granularity. We fo-
cus on traces collected with mmWave coverage as 5G’s high-band
frequency range is considered key to support UHD and beyond
video streaming [49]. We use a custom 4K video [3] and encode
it using FFmpeg [6] with libx264 into 6 tracks (or qualities) with
different bitrates. 4K (or even 16K) video streaming usually requires
25-120 Mbps (246-328 Mbps) bandwidth [11, 18, 19, 66] which can
be easily met by 5G. Thus, to identify rate adaptation challenges
in 5G which has a mean throughput value that is 10× of 4G, we
scale the video bitrate of 5G tracks used to match its throughput
range. This ensures avoiding any trivial bitrate selection. We set
the bitrate of the top track (i.e., highest video quality) to match
the median throughput of 5G/4G network traces. In this study, the
maximum bitrate track for 5G is 160 Mbps, and 20 Mbps for 4G.
We then decide the bitrates for lower-quality tracks by keeping
the encoded bitrate ratio as ∼1.5 [45] between two adjacent tracks.
Note, our goal here is not to understand whether video streaming
is better over 5G or 4G. Rather, we focus on studying whether ex-
isting ABR algorithms can work well over mmWave 5G. Using the
throughput traces, we use Linux tc on the client side and control
the instantaneous bandwidth. For showing results, we normalize
the video bitrates by the bitrate of the top track.

We study the following 7 state-of-the-art ABR algorithms cover-
ing 4 different categories. (1) Buffer-based: BBA [32] and BOLA [56]
make bitrate decisions based on the buffer occupancy. (2) Throughput-
based: simple rate-based (RB) and FESTIVE [33] use information of
past chunks to estimate future throughput and decide the bitrate
of the next chunk to download. (3) Control theoretic: FastMPC and
RobustMPC [62] make bitrate decisions by solving an optimization
problem of the QoE for the next 𝑛 chunks (e.g., 𝑛 = 5). (4) Machine
learning-based: Pensieve [38] adopts a deep neural-network to learn
bitrate decisions that maximize a QoE reward7.

5.2 Performance of Existing ABR Schemes
Overall, we find that multiple ABR algorithms that work well un-
der 4G do not maintain the high performance under 5G. Fig. 17
summarizes the bitrate and the video stall time for different ABR

7We show the results of the Pensieve model trained with real Lumos5G [40] network
traces. We also verify that the performance observed by using models trained with
synthetic traces (as suggested in their paper [38]) and Lumos5G traces are similar.

algorithms. The top-right rectangular region marked using maroon-
colored dashed lines represents ABR algorithms with better QoE.
Here, better QoE refers to ABR algorithms that achieve less than 5%
video stall and over 0.8 normalized bitrate across different traces.
For 5G, only one algorithm (robustMPC) provides better QoE while
for 4G there are 3 more algorithms.

Although most of the ABR algorithms under 5G can achieve
similar normalized bitrates as they are in 4G (i.e., similar Y-axis
values in Figs. 17a and 17b, with an average drop of only 3.5%),
the concerning problem for video streaming over 5G lies in the
video stalls. For RB, BOLA, MPC, and Pensieve, we observe a sig-
nificant increase (58.2% on average) of video stall. Fig. 17c shows
that except for BBA all other ABR algorithms suffer an increase in
video stalls when running over 5G. For instance, the mean video
stall time for fastMPC and Pensieve has increased by 82.0% and
259.5%, respectively. Pensieve outperforms all other algorithms in
4G but incurs the highest video stall time under 5G setting. Since
Pensieve makes bitrate selection to optimize its QoE reward, we
also compare its QoE reward with that of fastMPC and robustMPC.
Pensieve’s QoE reward improvement is also marginal compared
to other algorithms (0.66% improvement over fastMPC and 5.93%
over robustMPC), which is 3× lower than the results in the original
Pensieve paper. A possible explanation is that for 5G networks, a
larger dataset is needed for training the model to learn 5G specific
characteristics and make better decisions, which deserves further
study. After taking a closer look at the bitrate decisions taken by
Pensieve and fastMPC, we find that they sometimes choose the
highest bitrate chunk only to regret that it was a wrong decision
that is difficult to undo, resulting in a very high stall time. This is not
happening in 4G scenarios with the same optimization metric used.
Based on this phenomenon, next we dig further to quantitatively
understand the challenges involved in running ABR algorithms for
video streaming over 5G networks (§5.3).

5.3 Challenges in ABR Streaming under 5G
Throughput prediction.Many ABR algorithms incorporate net-
work throughput into its decision by leveraging a throughput pre-
dictor and their performance heavily depends on prediction accu-
racy. To study the impact of throughput prediction on 5G video
streaming, we fix other parts in an ABR algorithm and plug in dif-
ferent throughput predictors and compare the incurred QoE. Con-
sidered as one of the state-of-the-art ABR algorithms, we choose
fastMPC as the baseline since it explicitly incorporates a throughput
predictor while Fugu [61] and Pensieve use throughput informa-
tion implicitly. We compare three different throughput predictors:
(1) hmMPC: the original throughput predictor used by fastMPC
uses harmonic mean of past throughput values to predict future
throughput, (2)MPC_GDBT : a state-of-the-art mmWave 5G-specific
throughput predictor [40] that adopts a ML based approach called
Gradient Boosted Decision Tree (GDBT), and (3) truthMPC: ground-
truth throughput trace to represent the optimal online through-
put prediction scheme. Since MPC’s goal is to maximize its QoE
function [62], we use the QoE function as the metric to evaluate
the effectiveness of applying the 5G-specific throughput predictor.
Fig. 18a indicates that using the GDBT throughput predictor can
achieve 31.98% higher normalized QoE compared to the default har-
monic mean predictor. Compared to truthMPC though, adopting the
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Figure 17: QoE of different ABR algorithms in (a) 5G (b) 4G, and (c) comparison of video stall.
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Figure 18: QoE impact of: (a) throughput predictors (b) chunk length, and (c) inter-
face selection schemes.

Table 4: Energy consumption for different
interface selection schemes.

Interface selection scheme Energy (J)
5G-only MPC 495.0±55.1
5G-aware MPC 474.4±59.1

5G-aware MPC NO* 475.0±58.9
(*NO = No Overhead)

GDBT predictor only provides 1.3% less QoE. Therefore, improving
throughput prediction accuracy in ABR algorithms can significantly
enhance video streaming QoE and provide opportunities to build
better 5G-aware throughput-predictors. Since 5G now spans across
many different bands and its network performance variation is
large (§3), building better throughput prediction schemes is not
only vital to make ABRs work well over 5G but also to improve our
understanding of the 5G ecosystem in general.
Decisionmaking granularity. An ABR algorithm’s decisions are
coarse-grained in that it has to do chunk selection on chunk bound-
aries, and once made, such decisions cannot be rolled back. Specif-
ically in our 5G video streaming results, we find that just one or
two bad chunk selections can significantly affect QoE of the entire
stream. This one chunk download decision indeed quickly drains
the playback buffer or even causes 5–10 seconds of rebuffering.
One fix is to reduce the video chunk length to support fine-grained
selections. We study the effect of different chunk lengths (1/2/4s)
on 5G video streaming (with fastMPC). Fig. 18b shows that using
1s chunks provides 21.5% (35.9%) higher bitrate and 33.6% (29.8%)
less video stalls compared to 2s (4s) chunks. Therefore, although 2s
and 4s chunks are typically suggested for ABR [2], we argue video
content providers should consider shorter length chunks (e.g., 1s)
so that ABR algorithms can make finer-grained decisions and adapt
better to the highly fluctuating 5G network conditions.

5.4 Improving 5G ABR Streaming
Based on our observation that 5G consumes more power than 4G
when the throughput is low (§4) and 5G throughput fluctuates a
lot, we propose 5G-aware video streaming. The idea is switch
to 4G when ABR algorithms predict that 5G throughput is low
(i.e., <4G’s average throughput), given that 4G provides relatively
stable bandwidth, and switch back to 5G when the video buffer
level has reached over some threshold (empirically set to 10s). We
also take into account the switching overhead between 4G and
5G (§4) and emulate the switching delay using Linux tc. Similarly,
we use fastMPC as the baseline ABR algorithm. Figure 18c depicts
that our selection scheme (denoted as 5G-aware MPC) can reduce

Table 5: Factors considered for analyzing their impact on
page load time and energy consumption.

Factor Abbr Factor Abbr
# of dynamic/total objs DNO # of images (videos) NI (NV)

Size of dynamic objs / total page size (in bytes) DSO Total Page Size PS
# of objects NO Avg. Object Size AOS

video stall time by 26.9% compared to always using 5G interface
during the entire video. Compared to the 5G-aware MPC with no
overhead version (where we remove the interface switch delay,
assuming the UE can instantly switch between 4G and 5G), our
realistic interface selection model only incurs 4.0% more stall time.
Table 4 shows the corresponding energy consumption, measured by
feeding the collected video packet traces into our 5G power model
(§4). As shown, the proposed 5G-aware schemes consumes 4.2% less
energy than always using 5G. It’s also slightly “greener” than the no
overhead version by trading a little bit of video quality: downloading
higher quality chunks and consuming more energy. Figure 18c
and Table 4 conclude that carefully selecting between 4G and 5G
interfaces can both improve adaptive video streaming performance
(26.9% fewer stalls) as well as reduce the energy consumption (by
4.2%, comparative to the 4.7% saving achieved in [59]).

6 QoE IMPLICATIONS OF WEB BROWSING
OVER mmWAVE 5G

Previous sections have shown that mmWave 5G is able to provide
ultra-high throughput but requires more power to deliver this per-
formance. On the other hand, low-band 5G or LTE uses much less
power but delivers lower performance than mmWave. Hence, there
is a trade-off between achieving high performance and energy effi-
ciency. To get better insights about this trade-off, in this section we
use web browsing as a case study to understand the QoE implica-
tions of radio type (e.g., 4G or mmWave 5G) used to load websites
in-the-wild.
Data Collection Methodology. Using chrome-har-capturer [14],
we build scripts to instrument and load Alexa’s top 1500 websites
via the Chrome Browser app. For each website, we collect HTTP
Archive (i.e., HAR [1]) files as well as capture the packet traces.
Since packet capturing requires root permission, we used PX5.We
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conduct this experiment under stationary conditions in two radio
settings: (i) mmWave 5G is active, (ii) 4G/LTE is active. mmWave-
based experiments were conducted with UE having LoS to 5G tower.
We repeat the experiment at least 8 times per device per radio type.
To eliminate the impact of browser cache, we clear the cache before
loading the next website.

The HAR file of each website loading provides us the total page
load time (PLT), time to fetch each individual object (e.g., images,
.css or .js files) associated with the website, etc.We also extract
the per-second throughput trace observed in the packet dumps. This
trace is then fed to our power model proposed in §4 to estimate the
radio’s energy consumption for loading the website. All references
to 5G in this section refer to Verizon mmWave 5G service.
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Figure 19: Understanding how different factors affect the
page load times under mmWave 5G or 4G setting.

6.1 When does mmWave 5G help?
We list several factors (see Table 5 for the entire list) that might
potentially impact PLT performance and/or energy utilization. For
each radio type, Fig. 19 compares their empirical impact for a subset
of these factors on the two QoE metrics – performance and energy
consumption, and makes the following key observations: (i) As
the number of objects contained in a website increases, the PLT
performance gap between 4G and 5G increases with 4G being on the
poor side. Similar observations are made for other factors such as
total page size, number of dynamic objects. (ii) On the other hand,
the implications of the very same factors have an opposite effect
when seen under the purview of energy consumption where 4G
consumes far less energy than 5G. CDF plots in Fig. 20 show these
differences more clearly. We find that due to the high-throughput
offered by mmWave 5G, PLT performance in 5G is always better
than 4G. However, as demonstrated earlier in §4, when applications
are not bandwidth-hungry (e.g., normal web browsing), energy
utilization of 4G is better than that of mmWave 5G.
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Figure 20: CDF for PLT and energy.
While the importance of performance and energy utilization can

differ based on the usage context, we normalize both metrics for
fair comparison. Fig. 21 shows that even a 10% penalty over PLT in-
curred for choosing 4G over 5G can reduce energy consumption by
almost 70%. While such a high level of savings diminish as the PLT
penalty grows, the important takeaway here is that the slightest

permissible penalty in PLT (caused by choosing 4G) leads to high
energy savings. To understand where such a permissible penalty
might lie depends on how much additional delay in PLT is permis-
sible such that there is no significant impact on user experiences.
For example, a 2s or less PLT remains a widely considered golden
standard [44] for web page load times. An average 4G throughput
of say 60 Mbps can theoretically load a website with a total page
size of 15𝑀𝐵 in <2s and might potentially save energy while not
significantly affecting the QoE and/or bounce rate.8
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Figure 21: 4G’s PLT penalty and energy saving over 5G.

6.2 Interface Selection for Web Browsing
Using all the above insights, we next propose a simple yet insightful
model generation algorithm that takes into account all the factors
listed in Table 5 to decidewhether to use the 4G or 5G radio interface
for loading a website. To help make this decision, we come up with a
simple linear utility function: QoE = (𝛼×EC)+(𝛽×PLT) that allows
us to tune the weights 𝛼 and 𝛽 for the two competing QoE metrics -
energy consumption (EC) and page load times (PLT), respectively.
To make the generated model insightful, it will be useful to know
what factors (from Table 5) of a website makes a model choose a
particular radio interface over another.

For this case study, we choose Decision Tree (DT) learning al-
gorithm for two reasons. First, DT is easy to run as it does not
require any massive computational power. Secondly, it provides
indices (e.g., Gini index) for each of the features included in the
input feature vector making it easily interpretable. Both these ben-
efits can potentially help application/service developers to not only
get insights on improving and achieving their designed QoE but
also enable them to account for the usage context and quickly build
more models for achieving different QoE goals.

Table 6: DT’s radio interface selection results.

#ID Desired QoE 𝛼 𝛽 Use 4G Use 5G

M1 High Performance 0.2 0.8 19 401
M2 Performance Oriented 0.4 0.6 366 54
M3 Balanced 0.5 0.5 387 33
M4 Better Energy Saving 0.6 0.4 405 15
M5 High Energy Saving 0.8 0.2 420 0

Model Setup. We randomly split our dataset using a ratio of 7:3
such that 70% is used for training and validation and the rest is
used for testing. With over 30K data points, the time to generate
the model was less than a minute on a general-purpose laptop.
Results. Table 6 shows the results of different models’ radio inter-
face selection results over the 420 websites in the test set. Fig. 22
shows the bottom-up post-pruned DT for models M1 andM4.When
performance matters (M1), we find that two factors are important
8Bounce rate [44]: the percentage of visitors that leave a page without taking an action.
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Figure 22: High-Perf (M1) vs. Energy Saving (M4) models.

in deciding the radio type: (1) the total page size in bytes, and
(2) the proportion of dynamic vs. static objects (e.g., ads vs. logos)
In contrast, when energy utilization is preferred (M4), 4G radio can
handle more websites while 5G will be the preferred radio when the
website has an extremely high number of dynamic objects (>76%)
compared to static objects. By feeding the web packet traces into
our constructed power model (§4), we find that interface selection
help save 15-66% energy while improving the overall QoE. The
dynamic 4G/5G switching scheme proposed in [59] brings a 25%
saving on energy but does not consider the page load time.

7 RELATEDWORK
5G Measurements. Xu et al. [59] did a measurement study of a
commercial mid-band 5G service in China. Narayanan et al. [39]
established baseline performance of the very initial 5G commercial
deployments (mmWave and mid-band) in the US. Lumos5G [40]
focused on mmWave 5G throughput characterization and proposed
machine learning models for throughput prediction. In our study,
we consider both mmWave and low-band 5G with wider-range of
5G smartphone models and server locations. We also conduct the
first measurement study of an operational SA 5G service.
5G RRC Parameters. Existing work have made various efforts
to investigate RRC state machine for 3G/4G [31, 48, 51]. For 5G,
Xu et al. [59] leverages the UE’s diagnostic interface to access lower-
layer signaling messages and monitor RRC state transitions. Access
to the diagnostic interface requires special license from the chipset
vendor which can be challenging and cost-prohibitive. We there-
fore use an unrooted approach (i.e., RRC-Probe) to infer RRC state
machine for both NSA and SA 5G.
5G Power Characteristics. 3G/4G power characteristics have
been extensively studied in literature [24, 31, 47, 52] while 5G power
characteristics remain under explored. Xu et al. [59] conducted a pre-
liminary measurement study to understand mid-band 5G’s power
consumption and energy efficiency by saturating the link capacity
and compare it with that of 4G/LTE. They used a software power
monitor to measure power consumption. In this paper, along with a
software-based approach, we also use a hardware power monitor to
measure power. We provide a more thorough characterization of 5G
power consumption for both: mmWave/high-band and low-band
5G, and compare with that of existing 4G/LTE. Our methodology
to characterize power consumption includes both: conducting con-
trolled (e.g., at different uplink/downlink target throughput) and
in-the-wild (e.g., stationary and walking) experiments.
Smartphone Power Modeling. Prior studies have built power
models for 3G [47, 48, 55, 65] and 4G/LTE [26, 31, 42]. Some focus
on energy consumption for video streaming [63, 64] and web page
load [23]. However, whenmodeling power during data transfer, they

either treat the network power as a constant value or only consider a
single impacting factor such as throughput or signal strength during
model construction. For 5G, several factors can together make a
significant impact on the smartphone power level, and different
5G technologies relying on different radio frequency bands also
incur different power consumption. In this paper, we model the
data transfer power considering factors including signal strength
and throughput and further show that power model characteristics
vary across different 5G bands.
MobileVideo Streaming.Video delivery over LTE has beenwidely
investigated [36, 57, 60, 69]. However, video streaming performance
over real commercial 5G networks (especially over mmWave) has
been largely under explored. Xu et al. [59] performed a prelimi-
nary study of UHD panoramic video telephony over mid-band 5G.
Han et al. [28] showcased an example of streaming volumetric/6D
video over a mmWave 5G network under line-of-sight condition.
There have also been efforts on evaluating the performance of dif-
ferent ABR algorithms for HTTP adaptive streaming [21, 37, 38, 61].
Nevertheless, none of them have examined the performance of
existing ABR algorithms over 5G. Researchers also observe that
better throughput prediction can improve video performance in cel-
lular networks [71]. This is even more important for 5G ecosystem
that supports a wide range of frequency bands with diverse cover-
age and performance characteristics. For instance, in the case of
mmWave 5G, performance can be greatly affected by environmental
and user-side factors [39, 40]. Xu et al. [59] did a preliminary study
on optimizing 5G power management by dynamically switching
between 4G and 5G interfaces. However, their goal was to solely
improve energy efficiency, not for application QoE.
Mobile Web Browsing. Previous studies mostly focus on under-
standing and improving web page loading over legacy 3G/4G net-
works [22, 46, 58]. Narayanan et al. [39] studied web page loading
performance with different HTTP protocol version numbers and
encryption configurations using mmWave 5G. Xu et al. [59] looked
into the downloading and rendering performance with different
types of websites using mid-band 5G. Our study includes a compre-
hensive examination of the performance and energy consumption
loading top websites using 5G, and proposes simple yet intelligent
interface selection schemes to satisfy different QoE goals.

8 CONCLUSION
Leveraging a custom measurement platform, we have conducted
comprehensive measurements of several key aspects of commercial
5G: end-to-end network performance, power characteristics, 4G/5G
interaction, and application QoE. Our findings reveal the state-of-
the-art landscape of the 5G ecosystem, in particular the higher
protocol stack. We have released our datasets and measurement
tools to the research community.
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A APPENDICES
Appendices are supportingmaterial that has not been peer-reviewed.

A.1 Impact of UE-Specs and Capabilities
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Figure 23: Support for improved carrier aggregation
schemes in 5G-NR radios boost throughput performance.

Commercial 5G landspace has improved over time along several
dimensions. Most notably for this experiment that tries to quantify
the impact of UE-specs on network performance, we find that latest
high-end smartphones such as S20U are able to improve downlink
and uplink throughput by increasing the number of radio chan-
nels (often referred to as carrier aggregation) used between the UE
and RAN. For example, previous generation of 5G smartphones
(e.g., considered in the baseline w/ QC X50 modem [7]) as well as
the cheaper variants of mmWave 5G phones (e.g., PX5 w/ QC X52
modem [9]) uses 4×100 MHz or 4CC (component carriers) for down-
link data transfers and 1CC for uplink. On the other hand, S20U
(w/ QC X55 modem [10]) supports 8CC over downlink (and 2CC
over uplink) resulting in significant improvements in throughput
performance. Fig. 23 compares the downlink and uplink through-
put between PX5 and S20U. Clearly, S20U provides 50% to 60%
improvements in both uplink and downlink throughput over PX5
and the baseline. Of course, harnessing for such carrier aggrega-
tion schemes over mmWave bands also requires support from 5G
carriers and their infrastructure. We did not find any significant
impact of UE specs over latency.

A.2 Impact of Server-Side & Other Factors
Due to mmWave 5G’s ultra-high throughput, performance bot-
tleneck can also be due to factors at end-devices. While we just
illustrated this on the UE-side, we now take a look at how server-
side and other factors might affect mmWave 5G’s performance.
We have already seen earlier (§3.2) that the default Linux kernel’s
TCP parameters such as tcp_wmem on the server-side need to be
increased drastically to improve single TCP connection throughput
and utilize mmWave 5G’s available bandwidth. Similarly, in the
future, when uplink throughput improves and more generically for
any transport protocol, careful attention is needed to ensure kernel
parameters on both (server and UE) ends are tuned to support ap-
plication needs and fully utilize mmWave’s ultra-high bandwidth
capacity. However, challenges lie to ensure such changes to trans-
port layer configurations do not adversely affect other connections
over the network that might not necessarily support or need such
high throughput.
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Table 7: Important 4G/5G RRC parameters using RRC-Probe.
Mobile Service RRC Parameter (ms)

Carrier Radio type UE-inactivity timer Long DRX cycle IDLE DRX cycle 4G promotion delay 5G promotion delay
T-Mobile SA low-band 10400 40 1250 N/A 341
T-Mobile NSA low-band 10400 (12120) 320 1200 210 1440
Verizon NSA mmWave 10500 320 1280 396 1907
Verizon NSA low-band 10200 (18800) 400 1100 288 N/A
T-Mobile 4G 5000 400 1300 190 N/A
Verizon 4G 10200 300 1280 265 N/A
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Figure 24: [Verizon mmWave] UE’s downlink throughput
perceived using several Speedtest servers located in the
same state as that of UE (Minnesota). Using Verizon’s
own server located in the UE’s local city (Minneapolis)
achieves highest throughput. Others are affected by other
(e.g., Internet-side or server-side) factors, e.g., NIC/Switch-
Port capacity, network configurations and/or congestion.

Next, we try to understand how different Speedtest servers
located in the same state as that of UE (i.e., Minnesota) impact
throughput performance. Such bandwidth testing servers are typ-
ically hosted by ISPs, mobile operators, and academic organiza-
tions. Fig. 24 shows the UE’s downlink throughput (using multi-
ple connections) for all the servers. No doubt, the carrier’s own
hosted server (Verizon) provides the best throughput of over 3 Gbps.
Servers 2 to 23 also provide an impressive downlink throughput of
∼2.8 Gbps (i.e., 10% degradation over Verizon’s own server). This
is most likely due to the additional Internet side routing overhead
which also increases latency. We also find evidence that production
level Speedtest servers might actually not support throughput over
certain limits. For instance, we find servers 25 to 28 are bound by
2 Gbps, while servers 29 to 33 are bound by 1 Gbps. We believe
these bounds might either be due to NIC/switch-port limitations
or network configurations. In either case, with mmWave’s ultra-
high throughput capacity, servers should also have sufficient up-
link/downlink capacities to the Internet which can be challenging
due to increase in costs and/or infrastructure limitations.

A.3 RRC State Machine Parameters
We summarize a list of timers of RRC state transitions for different
networks/carriers/band configurations in Table 7. When the radio
is active and there are no incoming/outgoing packets, UE starts the
tail timer (i.e., UE-inactivity timer) and stays in RRC_CONNECTED
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Figure 25: Results of inferring different RRC States using
RRC-Probe for SA 5G, NSA 5G and 4G/LTE.

for 𝑇𝑡𝑎𝑖𝑙 before demoting to RRC_IDLE. Discontinuous Reception
(DRX) is adopted by both 4G and 5G for power saving in which UE
periodically wakes up to check paging messages and rests for the
remaining time of the cycle. The periods in RRC_CONNECTED and
RRC_IDLE are different. 𝑇𝑙𝑜𝑛𝑔_𝑑𝑟𝑥 is the cycle period of Long DRX
in RRC_CONNECTED and 𝑇𝑖𝑑𝑙𝑒_𝑑𝑟𝑥 is the cycle period of DRX in
RRC_IDLE. We do not observe and infer Short DRX cycle with RRC-
Probe due to its very small cycle period. We also calculate the delay
for promotion from RRC_IDLE to 4G and 5G which is 𝑇4𝑔_𝑝𝑟𝑜 and
𝑇5𝑔_𝑝𝑟𝑜 respectively. Fig. 25 shows the results of the different RRC
states inferred using RRC-Probe for all the configurations. Note,
we observe that in NSA, sometimes the packets might arrive over
4G interface (with higher latency) while other times packets might
arrive over 5G interface (with lower latency). This can be seen for
the NSA low-band 5G setting for both Verizon and T-Mobile carriers.
We have therefore also mentioned a second tail-timer for such
settings (see timers in brackets in Table 7). Although not shown,
for 4G→ 5G promotion in NSA 5G, UE will first promote to 4G’s
CONNECTED state before switching to 5G (i.e., LTE_RRC_IDLE →
LTE_RRC_CONNECTED → NR_RRC_CONNECTED). In SA 5G though,
the UE will directly directly reach NR_RRC_CONNECTED.

A.4 Data Transfer (Throughput vs. Power)
4G vs. 5G. Similar to Fig.11 in §4.3, which reports the throughput-
power relationship for mmWave 5G, low-band 5G, and 4G using
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S20U in Minneapolis (MN), we also conduct the same set of experi-
ments using S10 smartphones in Ann Arbor (MI), which have rela-
tively older 5G modems and chipsets. Fig. 26 shows the throughput-
power relationship of mmWave 5G and 4G for both downlink and
uplink data transfer at controlled throughput target levels. For the
downlink and uplink transfer, we echo the observations made ear-
lier in §4.3 that mmWave 5G uses more power than 4G/LTE at low
throughput levels, but mmWave becomes more efficient at higher
throughput levels. The throughput-energy efficiency results are
shown in Fig. 27. Besides, as reported in [24], we also find that
the power consumption across different UE models can be differ-
ent. For example, the crossover points between mmWave 5G and
4G/LTE observed using S10 are different from those measured using
S20U. Nonetheless, the crossover points between S10 and S20U are
reasonably close to each other.
Table 8: Slopes of Throughput-Power curves indicating in-
crease in power for every 1 Mbps rise in throughput.

Device Network Downlink
(mW/Mbps)

Uplink
(mW/Mbps)

S10 4G 13.38 57.99
S10 5G (mmWave) 2.06 5.27
S20U 4G 14.55 80.21
S20U 5G (low-band) 13.52 29.15
S20U 5G (mmWave) 1.81 9.42

Downlink vs. Uplink. We also compare the downlink transfer
with uplink transfer for 4G and 5G. From the results seen in Figs. 11
and 26, we derive the slopes of throughput-power curves across
different device models and radio bands/technologies and list them
in Table 8 for different settings. From the results, we conclude that
uplink power increases 2.2× to 5.9× faster than downlink power
for both 5G and 4G, and downlink transfer is always more efficient
than uplink. This aligns with previous results on 3G/4G [31]. Un-
surprisingly, UE’s radio requires more power for sending data than
to receive [25]. We have quantitatively compared them between
state-of-the-art 5G and 4G commercial services.

A.5 Benchmarking Software-based Power
Monitor

We benchmark the software-based power monitor with different
activities including (1) randomly tapping on the screen and open-
ing/closing applications, (2) leaving the UE idle with the screen

Table 9: Benchmarking results on different test cases.

Test Case Relative error = SW / HW
@ 1Hz @ 10Hz

Random activities 84.2% 94.3%
Idle (screen on) 87.9% 93.7%
Idle (screen off) 80.9% 94.9%
UDP DL 50Mbps 87.1% 91.5%
UDP DL 400Mbps 87.4% 89.7%
UDP DL 800Mbps 87.5% 91.3%
UDP DL 1200Mbps 86.8% 91.2%
Video streaming 92.2% 92.9%

on/off, (3) performingUDP download at different speeds, and (4) run-
ning a video playback. We collect the battery status using both
software (API) and hardware (Monsoon) approaches and calculate
the average relative errors between the two approaches. The results
are shown in Table 9. The software monitor always underestimates
the UE power but a higher sampling rate may reduce the error.

A.6 Summary of Artifacts
The GitHub repository mentioned below contains the artifacts
(dataset and tools) associated with the paper:

https://github.com/SIGCOMM21-5G/artifact

This is a measurement paper with several types of experiments
conducted for different purposes having different methodologies.
To help quickly navigate and have the ability to understand the
different pieces, we have created different folders for different ex-
periments. There are README files within each folder that provide
instructions on validating the experiment-specific artifacts. At the
very top of the README instructions, we also specify which re-
sults/plots the folder is corresponds to. Lastly, here are some generic
principles we followed for releasing the artifacts:

A.6.1 Dataset Size.

(1) If the dataset is small enough, we included the dataset file in
the repository itself.

(2) If the dataset files are huge, we use a small sample of the
dataset in the repository to demonstrate the functionality.

(3) You can replace the small subset with the full dataset. The
full dataset is provided in the experiment-specific README
file. In either case, we provide full processed results as well.

A.6.2 Data Analysis, Model/Plot Generation.

(1) If data analysis is involved, our instructions will contain
information on how to process the data.

(2) No matter what the dataset size is, we provide the fully gen-
erated results and/or plots. If you decide to run the analysis
and/or plotting scripts, the outcome of processing will re-
place the existing files in the repository.

(3) For the artifacts involved in §5 (ABR video streaming), exten-
sive computation resources are required. We have therefore
provide a screencast to show how the results were generated.
If one can arrange their own compute resources, we provide
instructions on how to setup the system and evaluate.

If you have any questions, feel free to reach out to the correspond-
ing authors: arvind@cs.umn.edu, xumiao@umich.edu.

https://github.com/SIGCOMM21-5G/artifact
mailto:arvind@cs.umn.edu,xumiao@umich.edu?cc=zmao@umich.edu,fengqian@umn.edu,zhzhang@cs.umn.edu
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